This question already has an answer here:
- Split comma-separated strings in a column into separate rows 4 answers
I have a data set of user stats of the following form:
df
user date group
1 X 2017-06-21 S;Y;J
2 Y 2017-06-09 Y;F;P;C
3 R 2017-12-29 K;A
4 Q 2017-08-31 W;I
5 B 2018-01-30 P;M;E
Which can be generated with:
set.seed(10)
n = 5
dates <- seq.Date(as.Date("2017-04-01"), as.Date("2018-05-01"), by=1)
df <- data.frame(user = sample(LETTERS, n, replace=TRUE),
date = sample(dates, n, replace=TRUE))
df$group <- "A"
for(i in 1:n){
df$group[i] <- paste(sample(LETTERS, sample(1:5, 1, replace=FALSE),
replace=FALSE), collapse=";")
}
I want to split and expand the group
column so that it matches the date and user given. For example, User X
has interacted with three groups on 2017-06-21
, which I'd like to have as three separate entries instead of one. I have code that works for this, but I'm looking for a faster, more R friendly way of replicating this. My current solution is:
# Get the number of groups for each entry
n_groups <- 1 + gsub("[^;]", "", df$group) %>% nchar()
# Get the index for the entries with multiple groups
index <- which(n_groups > 1)
# Get a new vector of dates and users
dates <- integer(sum(n_groups))
class(dates) <- "Date"
users <- vector(mode='character',
length = sum(n_groups))
k <- 1
for(i in 1:length(n_groups)){
for(j in 1:n_groups[i]){
dates[k] <- df$date[i]
users[k] <- as.character(df$user[i])
k <- k + 1
}
}
df2 <- data.frame(date = dates, user = users,
group = unlist(strsplit(df$group, split = ";")))
df2
date user group
1 2017-06-21 X S
2 2017-06-21 X Y
3 2017-06-21 X J
4 2017-06-09 Y Y
5 2017-06-09 Y F
6 2017-06-09 Y P
7 2017-06-09 Y C
8 2017-12-29 R K
9 2017-12-29 R A
10 2017-08-31 Q W
11 2017-08-31 Q I
12 2018-01-30 B P
13 2018-01-30 B M
14 2018-01-30 B E