Edit: Just wanted to make the question I have more clear. I pretty much am having trouble seeing how something like Matrix.CreateTransformationZ works in the context of not only matrix multiplication but more importantly what this does to the screen space/world space so I can get a clearer picture. So maybe someone could alter the code or give me a short snippet to test out where I can use this to either rotate around an axis and/or orbit around the axis. I have also changed the example.
So I'm still kind of having trouble visualizing how matrices work with the xna screen space.
I'll give you an example:
public class Game1 : Microsoft.Xna.Framework.Game
{
Texture2D shipTexture, rockTexture;
Vector2 shipPosition = new Vector2(100.0f, 100.0f);
Vector2 rockPosition = new Vector2(100.0f, 29.0f);
int count;
float shipRotation, rockRotation;
float rockSpeed, rockRotationSpeed;
bool move = true;
const int rock = 0;
const int ship = 1;
Color[] rockColor;
Color[] shipColor;
float testRot = 0.0f;
Vector2 shipCenter; int shipWidth, shipHeight;
Vector2 rockCenter; int rockWidth, rockHeight;
GraphicsDeviceManager graphics;
SpriteBatch spriteBatch;
#region maincontent
public Game1()
{
graphics = new GraphicsDeviceManager(this);
Content.RootDirectory = "Content";
}
/// <summary>
/// Allows the game to perform any initialization it needs to before starting to run.
/// This is where it can query for any required services and load any non-graphic
/// related content. Calling base.Initialize will enumerate through any components
/// and initialize them as well.
/// </summary>
protected override void Initialize()
{
// TODO: Add your initialization logic here
rockSpeed = 0.16f;
rockRotationSpeed = 0.3f;
base.Initialize();
}
/// <summary>
/// LoadContent will be called once per game and is the place to load
/// all of your content.
/// </summary>
protected override void LoadContent()
{
shipTexture = Content.Load<Texture2D>("Images\\ship");
rockTexture = Content.Load<Texture2D>("Images\\asteroid");
rockWidth = rockTexture.Width; rockHeight = rockTexture.Height;
shipWidth = shipTexture.Width; shipHeight = shipTexture.Height;
rockCenter = new Vector2(rockWidth / 2, rockHeight / 2);
shipCenter = new Vector2(shipWidth / 2, shipHeight / 2);
// Create a new SpriteBatch, which can be used to draw textures.
spriteBatch = new SpriteBatch(GraphicsDevice);
// TODO: use this.Content to load your game content here
rockColor = new Color[rockTexture.Width * rockTexture.Height];
rockTexture.GetData(rockColor);
shipColor = new Color[shipTexture.Width * shipTexture.Height];
shipTexture.GetData(shipColor);
}
/// <summary>
/// UnloadContent will be called once per game and is the place to unload
/// all content.
/// </summary>
protected override void UnloadContent()
{
// TODO: Unload any non ContentManager content here
}
/// <summary>
/// This is called when the game should draw itself.
/// </summary>
/// <param name="gameTime">Provides a snapshot of timing values.</param>
protected override void Draw(GameTime gameTime)
{
GraphicsDevice.Clear(Color.CornflowerBlue);
spriteBatch.Begin(SpriteBlendMode.AlphaBlend);
spriteBatch.Draw(rockTexture, rockPosition,
null, Color.White, testRot, rockCenter, 1.0f,
SpriteEffects.None, 0.0f);
spriteBatch.Draw(shipTexture, shipPosition,
null, Color.White, shipRotation, shipCenter,
1.0f, SpriteEffects.None, 0.0f);
spriteBatch.End();
// TODO: Add your drawing code here
base.Draw(gameTime);
}
#endregion
/// <summary>
/// Allows the game to run logic such as updating the world,
/// checking for collisions, gathering input, and playing audio.
/// </summary>
/// <param name="gameTime">Provides a snapshot of timing values.</param>
protected override void Update(GameTime gameTime)
{
testRot += 0.034906585f;
// Allows the game to exit
if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
this.Exit();
UpdateAsteroid(gameTime);
RotateShip(gameTime);
MoveShip(gameTime);
// TODO: Add your update logic here
CheckCollisions();
base.Update(gameTime);
}
#region Collisions
public Color PixelColor(int objectNum, int pixelNum)
{
switch (objectNum)
{
case rock:
return rockColor[pixelNum];
case ship:
return shipColor[pixelNum];
}
return Color.White;
}
public bool PixelCollision(Matrix transformA, int pixelWidthA, int pixelHeightA, int A,
Matrix transformB, int pixelWidthB, int pixelHeightB, int B)
{
Matrix temp = Matrix.Invert(transformB);
Matrix AtoB = transformA * Matrix.Invert(transformB);
Vector2 columnStep, rowStep, rowStartPosition;
columnStep = Vector2.TransformNormal(Vector2.UnitX, AtoB);
rowStep = Vector2.TransformNormal(Vector2.UnitY, AtoB);
rowStartPosition = Vector2.Transform(Vector2.Zero, AtoB);
for (int rowA = 0; rowA < pixelHeightA; rowA++)
{
// begin at the left
Vector2 pixelPositionA = rowStartPosition;
// for each column in the row (move left to right)
for (int colA = 0; colA < pixelWidthA; colA++)
{
// get the pixel position
int X = (int)Math.Round(pixelPositionA.X);
int Y = (int)Math.Round(pixelPositionA.Y);
// if the pixel is within the bounds of B
if (X >= 0 && X < pixelWidthB && Y >= 0 && Y < pixelHeightB)
{
// get colors of overlapping pixels
Color colorA = PixelColor(A, colA + rowA * pixelWidthA);
Color colorB = PixelColor(B, X + Y * pixelWidthB);
// if both pixels are not completely transparent,
if (colorA.A != 0 && colorB.A != 0)
return true; // collision
}
// move to the next pixel in the row of A
pixelPositionA += columnStep;
}
// move to the next row of A
rowStartPosition += rowStep;
}
return false; // no collision
}
public Matrix Transform(Vector2 center, float rotation, Vector2 position)
{
return Matrix.CreateTranslation(new Vector3(-center, 0.0f)) *
Matrix.CreateRotationZ(rotation) *
Matrix.CreateTranslation(new Vector3(position, 0.0f));
}
public static Rectangle TransformRectangle(Matrix transform, int width, int height)
{
Vector2 leftTop = new Vector2(0.0f, 0.0f);
Vector2 rightTop = new Vector2(width, 0.0f);
Vector2 leftBottom = new Vector2(0.0f, height);
Vector2 rightBottom = new Vector2(width, height);
Vector2.Transform(ref leftTop, ref transform, out leftTop);
Vector2.Transform(ref rightTop, ref transform, out rightTop);
Vector2.Transform(ref leftBottom, ref transform, out leftBottom);
Vector2.Transform(ref rightBottom, ref transform, out rightBottom);
Vector2 min = Vector2.Min(Vector2.Min(leftTop, rightTop), Vector2.Min(leftBottom, rightBottom));
Vector2 max = Vector2.Max(Vector2.Max(leftTop, rightTop), Vector2.Max(leftBottom, rightBottom));
return new Rectangle((int)min.X, (int)min.Y,
(int)(max.X - min.X), (int)(max.Y - min.Y));
}
private void CheckCollisions()
{
Matrix shipTransform, rockTransform;
Rectangle shipRectangle, rockRectangle;
rockTransform = Transform(rockCenter, rockRotation, rockPosition);
rockRectangle = TransformRectangle(rockTransform, rockWidth, rockHeight);
shipTransform = Transform(shipCenter, shipRotation, shipPosition);
shipRectangle = TransformRectangle(shipTransform, shipWidth, shipHeight);
if (rockRectangle.Intersects(shipRectangle)) // rough collision check
if (PixelCollision( // exact collision check
rockTransform, rockWidth, rockHeight, rock,
shipTransform, shipWidth, shipHeight, ship))
move = false;
}
#endregion
#region Moves_and_Rotations
private void UpdateAsteroid(GameTime gameTime)
{
float timeLapse = (float)gameTime.ElapsedGameTime.Milliseconds;
if (move == true)
{
if ((rockWidth + rockPosition.X >= Window.ClientBounds.Width))
{
rockSpeed *= -1.0f;
rockPosition.X += rockSpeed * timeLapse;
}
else if ((rockPosition.X <= 0))
{
rockSpeed *= -1.0f;
rockPosition.X += rockSpeed * timeLapse;
}
else
rockPosition.X += rockSpeed * timeLapse;
const float SCALE = 50.0f;
rockRotation += rockRotationSpeed * timeLapse / SCALE;
rockRotation = rockRotation % (MathHelper.Pi * 2.0f);
}
}
private float RotateShip(GameTime gameTime)
{
float rotation = 0.0f;
float speed = gameTime.ElapsedGameTime.Milliseconds / 300.0f;
if (!move)
return rotation;
KeyboardState keyboard = Keyboard.GetState();
if (keyboard.IsKeyDown(Keys.Right))
rotation = speed;
else if (keyboard.IsKeyDown(Keys.Left))
rotation = -speed;
shipRotation += rotation;
shipRotation = shipRotation % (MathHelper.Pi * 2.0f);
return shipRotation;
}
private void MoveShip(GameTime gameTime)
{
const float SCALE = 20.0f;
float speed = gameTime.ElapsedGameTime.Milliseconds / 100.0f;
KeyboardState keyboard = Keyboard.GetState();
if (keyboard.IsKeyDown(Keys.Up))
{
shipPosition.X += (float)Math.Sin(shipRotation) * speed * SCALE;
shipPosition.Y -= (float)Math.Cos(shipRotation) * speed * SCALE;
}
else if (keyboard.IsKeyDown(Keys.Down))
{
shipPosition.X -= (float)Math.Sin(shipRotation) * speed * SCALE;
shipPosition.Y += (float)Math.Cos(shipRotation) * speed * SCALE;
}
}
#endregion
}
I took this from XNA Game Creators, it's simply a method of doing Pixel Detection.
In the Transform method above, matrix multiplication occurs against I guess a rectangle. What exactly is happening in terms of the screen space/world space?
Why is author multiplying the matrix by the inverse of another matrix? (He mentions that somehow this makes it relative to the other asset)