I have an array of values that I want to replace with from an array of choices based on which choice is linearly closest.
The catch is the size of the choices is defined at runtime.
import numpy as np
a = np.array([[0, 0, 0], [4, 4, 4], [9, 9, 9]])
choices = np.array([1, 5, 10])
If choices was static in size, I would simply use np.where
d = np.where(np.abs(a - choices[0]) > np.abs(a - choices[1]),
np.where(np.abs(a - choices[0]) > np.abs(a - choices[2]), choices[0], choices[2]),
np.where(np.abs(a - choices[1]) > np.abs(a - choices[2]), choices[1], choices[2]))
To get the output:
>>d
>>[[1, 1, 1], [5, 5, 5], [10, 10, 10]]
Is there a way to do this more dynamically while still preserving the vectorization.
Subtract choices from a
, find the index of the minimum of the result, substitute.
a = np.array([[0, 0, 0], [4, 4, 4], [9, 9, 9]])
choices = np.array([1, 5, 10])
b = a[:,:,None] - choices
np.absolute(b,b)
i = np.argmin(b, axis = -1)
a = choices[i]
print a
>>>
[[ 1 1 1]
[ 5 5 5]
[10 10 10]]
a = np.array([[0, 3, 0], [4, 8, 4], [9, 1, 9]])
choices = np.array([1, 5, 10])
b = a[:,:,None] - choices
np.absolute(b,b)
i = np.argmin(b, axis = -1)
a = choices[i]
print a
>>>
[[ 1 1 1]
[ 5 10 5]
[10 1 10]]
>>>
The extra dimension was added to a
so that each element of choices
would be subtracted from each element of a
. choices
was broadcast against a
in the third dimension, This link has a decent graphic. b.shape
is (3,3,3). EricsBroadcastingDoc is a pretty good explanation and has a graphic 3-d example at the end.
For the second example:
>>> print b
[[[ 1 5 10]
[ 2 2 7]
[ 1 5 10]]
[[ 3 1 6]
[ 7 3 2]
[ 3 1 6]]
[[ 8 4 1]
[ 0 4 9]
[ 8 4 1]]]
>>> print i
[[0 0 0]
[1 2 1]
[2 0 2]]
>>>
The final assignment uses an Index Array or Integer Array Indexing.
In the second example, notice that there was a tie for element a[0,1]
, either one or five could have been substituted.
To explain wwii's excellent answer in a little more detail:
The idea is to create a new dimension which does the job of comparing each element of a
to each element in choices
using numpy broadcasting. This is easily done for an arbitrary number of dimensions in a
using the ellipsis syntax:
>>> b = np.abs(a[..., np.newaxis] - choices)
array([[[ 1, 5, 10],
[ 1, 5, 10],
[ 1, 5, 10]],
[[ 3, 1, 6],
[ 3, 1, 6],
[ 3, 1, 6]],
[[ 8, 4, 1],
[ 8, 4, 1],
[ 8, 4, 1]]])
Taking argmin
along the axis you just created (the last axis, with label -1) gives you the desired index in choices
that you want to substitute:
>>> np.argmin(b, axis=-1)
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2]])
Which finally allows you to choose those elements from choices
:
>>> d = choices[np.argmin(b, axis=-1)]
>>> d
array([[ 1, 1, 1],
[ 5, 5, 5],
[10, 10, 10]])
For a non-symmetric shape:
Let's say a
had shape (2, 5)
:
>>> a = np.arange(10).reshape((2, 5))
>>> a
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
Then you'd get:
>>> b = np.abs(a[..., np.newaxis] - choices)
>>> b
array([[[ 1, 5, 10],
[ 0, 4, 9],
[ 1, 3, 8],
[ 2, 2, 7],
[ 3, 1, 6]],
[[ 4, 0, 5],
[ 5, 1, 4],
[ 6, 2, 3],
[ 7, 3, 2],
[ 8, 4, 1]]])
This is hard to read, but what it's saying is, b
has shape:
>>> b.shape
(2, 5, 3)
The first two dimensions came from the shape of a
, which is also (2, 5)
. The last dimension is the one you just created. To get a better idea:
>>> b[:, :, 0] # = abs(a - 1)
array([[1, 0, 1, 2, 3],
[4, 5, 6, 7, 8]])
>>> b[:, :, 1] # = abs(a - 5)
array([[5, 4, 3, 2, 1],
[0, 1, 2, 3, 4]])
>>> b[:, :, 2] # = abs(a - 10)
array([[10, 9, 8, 7, 6],
[ 5, 4, 3, 2, 1]])
Note how b[:, :, i]
is the absolute difference between a
and choices[i]
, for each i = 1, 2, 3
.
Hope that helps explain this a little more clearly.
I love broadcasting
and would have gone that way myself too. But, with large arrays, I would like to suggest another approach with np.searchsorted
that keeps it memory efficient and thus achieves performance benefits, like so -
def searchsorted_app(a, choices):
lidx = np.searchsorted(choices, a, 'left').clip(max=choices.size-1)
ridx = (np.searchsorted(choices, a, 'right')-1).clip(min=0)
cl = np.take(choices,lidx) # Or choices[lidx]
cr = np.take(choices,ridx) # Or choices[ridx]
mask = np.abs(a - cl) > np.abs(a - cr)
cl[mask] = cr[mask]
return cl
Please note that if the elements in choices
are not sorted, we need to add in the additional argument sorter
with np.searchsorted
.
Runtime test -
In [160]: # Setup inputs
...: a = np.random.rand(100,100)
...: choices = np.sort(np.random.rand(100))
...:
In [161]: def broadcasting_app(a, choices): # @wwii's solution
...: return choices[np.argmin(np.abs(a[:,:,None] - choices),-1)]
...:
In [162]: np.allclose(broadcasting_app(a,choices),searchsorted_app(a,choices))
Out[162]: True
In [163]: %timeit broadcasting_app(a, choices)
100 loops, best of 3: 9.3 ms per loop
In [164]: %timeit searchsorted_app(a, choices)
1000 loops, best of 3: 1.78 ms per loop
Related post : Find elements of array one nearest to elements of array two