I am trying to detect foreground motion using opencv2 by removing static (mostly) BG elements. The method I am using is based on taking the mean of a series of images - representing the background. Then calculating one Standard deviation above and below that mean. Using that as a window to detect foreground motion.
This mechanism reportedly works well for moderately noisy environments like waving trees in the BG.
The desired output is a mask that can be used in a subsequent operation so as to minimise further processing. Specifically I am going to use optical flow detection within that region.
cv2 has made this much easier and the code is much simpler to read and understand. Thanks cv2 and numpy.
But I am having difficulty doing the correct FG detection.
Ideally I also want to erode/dilate the BG mean so as to eleminate 1 pixel noise.
The code is all togethr so you have a number of frames at the start (BGsample) to gather the BG data before FG detection starts. the only dependencies are opencv2 (> 2.3.1 ) and numpy (which should be included in > opencv 2.3.1 )
import cv2
import numpy as np
if __name__ == '__main__':
cap = cv2.VideoCapture(0) # webcam
cv2.namedWindow("input")
cv2.namedWindow("sig2")
cv2.namedWindow("detect")
BGsample = 20 # number of frames to gather BG samples from at start of capture
success, img = cap.read()
width = cap.get(3)
height = cap.get(4)
# can use img.shape(:-1) # cut off extra channels
if success:
acc = np.zeros((height, width), np.float32) # 32 bit accumulator
sqacc = np.zeros((height, width), np.float32) # 32 bit accumulator
for i in range(20): a = cap.read() # dummy to warm up sensor
# gather BG samples
for i in range(BGsample):
success, img = cap.read()
frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.accumulate(frame, acc)
cv2.accumulateSquare(frame, sqacc)
#
M = acc/float(BGsample)
sqaccM = sqacc/float(BGsample)
M2 = M*M
sig2 = sqaccM-M2
# have BG samples now
# start FG detection
key = -1
while(key < 0):
success, img = cap.read()
frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#Ideally we create a mask for future use that is B/W for FG objects
# (using erode or dilate to remove noise)
# this isn't quite right
level = M+sig2-frame
grey = cv2.morphologyEx(level, cv2.MORPH_DILATE,
cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)), iterations=2)
cv2.imshow("input", frame)
cv2.imshow("sig2", sig2/60)
cv2.imshow("detect", grey/20)
key = cv2.waitKey(1)
cv2.destroyAllWindows()