可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I've been reading about OOP in C but I never liked how you can't have private data members like you can in C++. But then it came to my mind that you could create 2 structures. One is defined in the header file and the other is defined in the source file.
// =========================================
// in somestruct.h
typedef struct {
int _public_member;
} SomeStruct;
// =========================================
// in somestruct.c
#include "somestruct.h"
typedef struct {
int _public_member;
int _private_member;
} SomeStructSource;
SomeStruct *SomeStruct_Create()
{
SomeStructSource *p = (SomeStructSource *)malloc(sizeof(SomeStructSource));
p->_private_member = 42;
return (SomeStruct *)p;
}
From here you can just cast one structure to the other.
Is this considered bad practice? Or is it done often?
回答1:
Personally, I'd more like this:
typedef struct {
int _public_member;
/*I know you wont listen, but don't ever touch this member.*/
int _private_member;
} SomeStructSource;
It's C after all, if people want to screw up, they should be allowed to - no need to hide stuff, except:
If what you need is to keep the ABI/API compatible, there's 2 approaches that's more common from what I've seen.
Don't give your clients access to the struct, give them an opaque handle (a void* with a pretty name), provide init/destroy and accessor functions for everything. This makes sure you can change
the structure without even recompiling the clients if you're writing a library.
provide an opaque handle as part of your struct, which you can allocate however you like. This approach is even used in C++ to provide ABI compatibility.
e.g
struct SomeStruct {
int member;
void* internals; //allocate this to your private struct
};
回答2:
sizeof(SomeStruct) != sizeof(SomeStructSource)
. This will cause someone to find you and murder you someday.
回答3:
You almost have it, but haven't gone far enough.
In the header:
struct SomeStruct;
typedef struct SomeStruct *SomeThing;
SomeThing create_some_thing();
destroy_some_thing(SomeThing thing);
int get_public_member_some_thing(SomeThing thing);
void set_public_member_some_thing(SomeThing thing, int value);
In the .c:
struct SomeStruct {
int public_member;
int private_member;
};
SomeThing create_some_thing()
{
SomeThing thing = malloc(sizeof(*thing));
thing->public_member = 0;
thing->private_member = 0;
return thing;
}
... etc ...
The point is, here now consumers have no knowledge of the internals of SomeStruct, and you can change it with impunity, adding and removing members at will, even without consumers needing to recompile. They also can't "accidentally" munge members directly, or allocate SomeStruct on the stack. This of course can also be viewed as a disadvantage.
回答4:
I do not recommend using the public struct pattern. The correct design pattern, for OOP in C, is to provide functions to access every data, never allowing public access to data. The class data should be declared at the source, in order to be private, and be referenced in a forward manner, where Create
and Destroy
does allocation and free of the data. In a such way the public/private dilemma won't exist any more.
/*********** header.h ***********/
typedef struct sModuleData module_t'
module_t *Module_Create();
void Module_Destroy(module_t *);
/* Only getters and Setters to access data */
void Module_SetSomething(module_t *);
void Module_GetSomething(module_t *);
/*********** source.c ***********/
struct sModuleData {
/* private data */
};
module_t *Module_Create()
{
module_t *inst = (module_t *)malloc(sizeof(struct sModuleData));
/* ... */
return inst;
}
void Module_Destroy(module_t *inst)
{
/* ... */
free(inst);
}
/* Other functions implementation */
In the other side, if you do not want to use Malloc/Free (which can be unnecessary overhead for some situations) I suggest you hide the struct in a private file. Private members will be accessible, but that on user's stake.
/*********** privateTypes.h ***********/
/* All private, non forward, datatypes goes here */
struct sModuleData {
/* private data */
};
/*********** header.h ***********/
#include "privateTypes.h"
typedef struct sModuleData module_t;
void Module_Init(module_t *);
void Module_Deinit(module_t *);
/* Only getters and Setters to access data */
void Module_SetSomething(module_t *);
void Module_GetSomething(module_t *);
/*********** source.c ***********/
void Module_Init(module_t *inst)
{
/* perform initialization on the instance */
}
void Module_Deinit(module_t *inst)
{
/* perform deinitialization on the instance */
}
/*********** main.c ***********/
int main()
{
module_t mod_instance;
module_Init(&mod_instance);
/* and so on */
}
回答5:
Never do that. If your API supports anything that takes SomeStruct as a parameter (which I'm expecting it does) then they could allocate one on a stack and pass it in. You'd get major errors trying to access the private member since the one the compiler allocates for the client class doesn't contain space for it.
The classic way to hide members in a struct is to make it a void*. It's basically a handle/cookie that only your implementation files know about. Pretty much every C library does this for private data.
回答6:
Something similar to the method you've proposed is indeed used sometimes (eg. see the different varities of struct sockaddr*
in the BSD sockets API), but it's almost impossible to use without violating C99's strict aliasing rules.
You can, however, do it safely:
somestruct.h
:
struct SomeStructPrivate; /* Opaque type */
typedef struct {
int _public_member;
struct SomeStructPrivate *private;
} SomeStruct;
somestruct.c
:
#include "somestruct.h"
struct SomeStructPrivate {
int _member;
};
SomeStruct *SomeStruct_Create()
{
SomeStruct *p = malloc(sizeof *p);
p->private = malloc(sizeof *p->private);
p->private->_member = 0xWHATEVER;
return p;
}
回答7:
I'd write a hidden structure, and reference it using a pointer in the public structure. For example, your .h could have:
typedef struct {
int a, b;
void *private;
} public_t;
And your .c:
typedef struct {
int c, d;
} private_t;
It obviously doesn't protect against pointer arithmetic, and adds a bit of overhead for allocation/deallocation, but I guess it's beyond the scope of the question.
回答8:
Use the following workaround:
#include <stdio.h>
#define C_PRIVATE(T) struct T##private {
#define C_PRIVATE_END } private;
#define C_PRIV(x) ((x).private)
#define C_PRIV_REF(x) (&(x)->private)
struct T {
int a;
C_PRIVATE(T)
int x;
C_PRIVATE_END
};
int main()
{
struct T t;
struct T *tref = &t;
t.a = 1;
C_PRIV(t).x = 2;
printf("t.a = %d\nt.x = %d\n", t.a, C_PRIV(t).x);
tref->a = 3;
C_PRIV_REF(tref)->x = 4;
printf("tref->a = %d\ntref->x = %d\n", tref->a, C_PRIV_REF(tref)->x);
return 0;
}
Result is:
t.a = 1
t.x = 2
tref->a = 3
tref->x = 4
回答9:
There are better ways to do this, like using a void *
pointer to a private structure in the public struct. The way you are doing it you're fooling the compiler.
回答10:
This approach is valid, useful, standard C.
A slightly different approach, used by sockets API, which was defined by BSD Unix, is the style used for struct sockaddr
.
回答11:
Not very private, given that the calling code can cast back to a (SomeStructSource *)
. Also, what happens when you want to add another public member? You'll have to break binary compatibility.
EDIT: I missed that it was in a .c file, but there really is nothing stopping a client from copying it out, or possibly even #include
ing the .c file directly.
回答12:
Related, though not exactly hiding.
Is to conditionally deprecate members.
Note that this works for GCC/Clang, but MSVC and other compilers can deprecate too,
so its possible to come up with a more portable version.
If you build with fairly strict warnings, or warnings as errors, this at least avoids accidental use.
// =========================================
// in somestruct.h
#ifdef _IS_SOMESTRUCT_C
# if defined(__GNUC__)
# define HIDE_MEMBER __attribute__((deprecated))
# else
# define HIDE_MEMBER /* no hiding! */
# endif
#else
# define HIDE_MEMBER
#endif
typedef struct {
int _public_member;
int _private_member HIDE_MEMBER;
} SomeStruct;
#undef HIDE_MEMBER
// =========================================
// in somestruct.c
#define _IS_SOMESTRUCT_C
#include "somestruct.h"
SomeStruct *SomeStruct_Create()
{
SomeStructSource *p = (SomeStructSource *)malloc(sizeof(SomeStructSource));
p->_private_member = 42;
return (SomeStruct *)p;
}
回答13:
My solution would be to provide only the prototype of the internal struct and then declare the definition in the .c file. Very useful to show C interface and use C++ behind.
.h :
struct internal;
struct foo {
int public_field;
struct internal *_internal;
};
.c :
struct internal {
int private_field; // could be a C++ class
};
Note: In that case, the variable have to be a pointer because the compiler is unable to know the size of the internal struct.