Here is my Django model:
class MyModel(models.Model):
a = IntegerField()
b = DateTimeField()
Here is the QuerySet I execute on this model to find the count, min, max and average b
s for each value of a
:
>>> from django.db.models import Count, Max, Min, Avg
>>> MyModel.objects.extra(
... select={'avg': 'AVG(UNIX_TIMESTAMP(b))'}
... ).values('a').annotate(
... count=Count('b'),
... min=Min('b'),
... max=Max('b'),
... )
Here is the result of the QuerySet above:
[
{'a': 1, 'count': 5, 'min': datetime.datetime(2015, 2, 26, 1, 8, 21, tzinfo=<UTC>), 'max': datetime.datetime(2015, 2, 26, 1, 8, 22, tzinfo=<UTC>)},
{'a': 2, 'count': 2, 'min': datetime.datetime(2015, 2, 26, 1, 8, 21, tzinfo=<UTC>), 'max': datetime.datetime(2015, 2, 26, 1, 8, 22, tzinfo=<UTC>)}
]
As you can see, the results of the QuerySet do not include the average field that I calculated. How can I get that in there? I have tried many different permutations. But if I can get the avg
field in there, then it seems to screw up the grouping by a
.
Instead of using the Django ORM, you could use a raw sql query.
from django.db import connection
query = """
SELECT `a`,
COUNT(b) AS `count`,
MAX(b) AS `max`,
AVG(UNIX_TIMESTAMP(b)) AS `avg`,
MIN(b) AS `min`
FROM `<appname>_<modelname>`
GROUP BY `a`
"""
cursor = connection.cursor()
cursor.execute(query)
result = cursor.fetchall()
This will give you something like:
(
(a value1, count, max, avg as unix timestamp, min), ...
(a value2, count, max, avg as unix timestamp, min), ...
(a value3, count, max, avg as unix timestamp, min), ...
)
Otherwise, the closest thing I could get using Django's ORM would be to abandon the UNIX_TIMESTAMP conversion in the extra clause:
from django.db.models import Count, Min, Max, Avg
MyModel.objects.all().values('a').annotate(
count=Count('b'),
max=Max('b'),
avg=Avg('b'),
min=Min('b')
)
Unfortunately, this will give you the average as a float.
[
{
'count': 15366,
'a': 0,
'avg': 19898862327498.82,
'min': datetime.datetime(1900, 1, 1, 0, 0),
'max': datetime.datetime(2012, 7, 3, 0, 0)
}, {
'count': 1726,
'a': 1,
'avg': 19785827400927.0,
'min': datetime.datetime(1920, 8, 25, 0, 0),
'max': datetime.datetime(1994, 12, 29, 0, 0)
},
...
]
You can try using something like
import datetime
datetime.datetime.strptime(str(int(ts)), '%Y%m%d%H%M%S%f')
to convert it back to a datetime object, though this will be an approximation, so I recommend using raw sql instead.