Using lapply and which to subset dataframe by both

2019-05-22 21:05发布

问题:

I have a dataframe with 5 dimensions of data that looks like this:

> dim(alldata)
[1] 162   6
> head(alldata)
         value layer Kmultiplier Resolution      Season           Variable
1:  0.01308008     b        .01K        1km    Baseflow Evapotranspiration
2:  0.03974779     b        .01K        1km   Peak Flow Evapotranspiration
3:  0.02396524     b        .01K        1km Summer Flow Evapotranspiration
4: -0.15670996     b        .01K        1km    Baseflow          Discharge
5:  0.06774948     b        .01K        1km   Peak Flow          Discharge
6: -0.04138313     b        .01K        1km Summer Flow          Discharge

What I'd like to do is get the mean of the value column for certain 'characteristics' of the data based on the other columns. So I use which to subset the data to only the variables I'm interested in, for example:

> subset=alldata[which(alldata$Variable=="Discharge" & alldata$Resolution=="1km" & alldata$Season=="Peak Flow"),]
> subset
          value layer Kmultiplier Resolution    Season  Variable
1:  0.067749478     b        .01K        1km Peak Flow Discharge
2:  0.058260448     b         .1K        1km Peak Flow Discharge
3: -0.223953725     b         10K        1km Peak Flow Discharge
4:  0.272916114     g        .01K        1km Peak Flow Discharge
5:  0.240135025     g         .1K        1km Peak Flow Discharge
6: -0.216730348     g         10K        1km Peak Flow Discharge
7:  0.088966500     s        .01K        1km Peak Flow Discharge
8: -0.018943754     s         .1K        1km Peak Flow Discharge
9: -0.008339365     s         10K        1km Peak Flow Discharge

Here's where I'm stuck. Let's say I want a vector or list of the mean value for each value in the "layer" column... so I would end up with 3 numbers, one for 'b' one for 'g' and one for 's'. I need to make a bunch of subsets like this and I think the apply functions can help, but after multiple tutorials and stack questions I cannot get this to work. A simpler example is fine too, like this:

> A=data.frame(seq(1,9),rep(c("a","b","c"),3),c(rep("type1",3),rep("type2",3),rep("type3",3)),c(rep("place1",2),rep("place2",2),rep("place3",2),rep("place1",2),rep("place2",1)))
> names(A)=c("value","Letter","Type","Place")
> A
  value Letter  Type  Place
1     1      a type1 place1
2     2      b type1 place1
3     3      c type1 place2
4     4      a type2 place2
5     5      b type2 place3
6     6      c type2 place3
7     7      a type3 place1
8     8      b type3 place1
9     9      c type3 place2

From this simple example, I need the mean of column "value", listed by Letter, for "place1", which should return a something like: "a=mean value, b=mean value, c=mean value" in whatever format works.

Is this a job for the apply functions? If so, how? If not, let me know a better alternative for subsetting my data.

Thank you!

回答1:

Alternative Solutions implemented on the example dataset given by you and not using any apply family functions here.

Using dplyr package

library(dplyr)
A %>% 
 group_by_(.dots = c("Place","Letter")) %>% 
 summarise(MEAN = mean(value))

# Source: local data frame [6 x 3]
# Groups: Place [?]

#    Place Letter  MEAN
#    <fctr> <fctr> <dbl>
# 1 place1      a     4
# 2 place1      b     5
# 3 place2      a     4
# 4 place2      c     6
# 5 place3      b     5
# 6 place3      c     6

OR

Using by() function

> by(A$value, A[,c(2,4)], FUN = mean)
# Letter: a
# Place: place1
# [1] 4
# ------------------------------------------------------------ 
# Letter: b
# Place: place1
# [1] 5
# ------------------------------------------------------------ 
# Letter: c
# Place: place1
# [1] NA
# ------------------------------------------------------------ 
# Letter: a
# Place: place2
# [1] 4
# ------------------------------------------------------------ 
# Letter: b
# Place: place2
# [1] NA
# ------------------------------------------------------------ 
# Letter: c
# Place: place2
# [1] 6
# ------------------------------------------------------------ 
# Letter: a
# Place: place3
# [1] NA
# ------------------------------------------------------------ 
# Letter: b
# Place: place3
# [1] 5
# ------------------------------------------------------------ 
# Letter: c
# Place: place3
# [1] 6


回答2:

Consider by the object-oriented wrapper of tapply that can subset a dataframe across one or more factors such as, Place and Time. From the list of dataframes you can row bind to one final df.

df_List <- by(A, A[,c("Place", "Letter")], 
                   FUN = function(i) transform(i, mean = mean(i$value)))

finaldf <- do.call(rbind, dfList)
finaldf
#   value Letter  Type  Place mean
# 1     1      a type1 place1    4
# 7     7      a type3 place1    4
# 4     4      a type2 place2    4
# 2     2      b type1 place1    5
# 8     8      b type3 place1    5
# 5     5      b type2 place3    5
# 3     3      c type1 place2    6
# 9     9      c type3 place2    6
# 6     6      c type2 place3    6


回答3:

Thanks for the advice. I ended up going with ddply in order to get my data into a more usable format, following general advice from this post.

Here's the simple example:

> A=data.frame(seq(1,9),rep(c("a","b","c"),3),c(rep("type1",3),rep("type2",3),rep("type3",3)),c(rep("place1",2),rep("place2",2),rep("place3",2),rep("place1",2),rep("place2",1)))
> names(A)=c("value","Letter","Type","Place")
> A
  value Letter  Type  Place
1     1      a type1 place1
2     2      b type1 place1
3     3      c type1 place2
4     4      a type2 place2
5     5      b type2 place3
6     6      c type2 place3
7     7      a type3 place1
8     8      b type3 place1
9     9      c type3 place2

Then here is my code to find the mean of 'value' for every value that is both place1 and type1:

> sub=ddply(A[which(A$Place=="place1" & A$Type=="type1"),],"value",summarize,mean=mean(value,na.rm=T))
> sub
  value mean
1     1    1
2     2    2

Since 'sub' is already a dataframe, it's easy to add columns with other characteristics and then plot these results.

---------------------------------------------------------------------------------

If you are interested, here is the more complex dataset I was actually trying to subset:

> head(alldata)
        value layer Kmultiplier Resolution      Season           Variable
1: 0.00000000     b           1        1km    Baseflow Evapotranspiration
2: 0.01308008     b         .01        1km    Baseflow Evapotranspiration
3: 0.00000000     b           1        1km   Peak Flow Evapotranspiration
4: 0.03974779     b         .01        1km   Peak Flow Evapotranspiration
5: 0.00000000     b           1        1km Summer Flow Evapotranspiration
6: 0.02396524     b         .01        1km Summer Flow Evapotranspiration

And the lines of code I wrote to subset it into plottable pieces:

  for(j in Season){
    for(i in res){
      ET=ddply(alldata[which(alldata$Variable=="Evapotranspiration" & alldata$Resolution==sprintf("%s",i) & alldata$Season==sprintf("%s",j)),],"Kmultiplier", summarize, mean = mean(value,na.rm=T))
      ET$Variable="Evapotranspiration";ET$Resolution=sprintf("%s",i);ET$Season=sprintf("%s",j)
      S=ddply(alldata[which(alldata$Variable=="Change in Storage" & alldata$Resolution==sprintf("%s",i) & alldata$Season==sprintf("%s",j)),],"Kmultiplier", summarize, mean = mean(value,na.rm=T))
      S$Variable="Change in Storage";S$Resolution=sprintf("%s",i);S$Season=sprintf("%s",j)
      Q=ddply(alldata[which(alldata$Variable=="Discharge" & alldata$Resolution==sprintf("%s",i) & alldata$Season==sprintf("%s",j)),],"Kmultiplier", summarize, mean = mean(value,na.rm=T))
      Q$Variable="Discharge";Q$Resolution=sprintf("%s",i);Q$Season=sprintf("%s",j)
      if(i=="1km"){resbind=rbind(Q,S,ET)}else{resbind2=rbind(resbind,Q,S,ET)}
    } 
    if(j=="Baseflow"){sbind=rbind(resbind2,Q,S,ET)}else if(j=="Peak Flow"){sbind2=rbind(resbind2,sbind,Q,S,ET)}else{ETSQ=rbind(resbind2,sbind2,Q,S,ET)}
  }
  ETSQ$Variable=factor(ETSQ$Variable,levels=c("Change in Storage","Evapotranspiration","Discharge"))
  print(ggplot(data=ETSQ,aes(x=Kmultiplier,y=mean, color=Variable,group=Variable))
        +geom_point()
        +geom_line()
        +labs(x="K scaled by",y="Percent change from Baseline case")
        +scale_y_continuous(labels=percent)
        +facet_grid(Season~Resolution)
        +theme_bw()
  )
  ggsave(sprintf("%s/Plots/SimpleLines/Variable_by_K.png",path),device = NULL,scale=1)

And finally the resulting plot: