I am experimenting with Coq Coinductive types. I use the lazy list type form the Coq'Art book (sect. 13.1.4):
Set Implicit Arguments.
CoInductive LList (A:Set) : Set :=
| LNil : LList A
| LCons : A -> LList A -> LList A.
Implicit Arguments LNil [A].
CoFixpoint LAppend (A:Set) (u v:LList A) : LList A :=
match u with
| LNil => v
| LCons a u' => LCons a (LAppend u' v)
end.
In order to match the guard condition I also use the following decomposition functions form this book:
Definition LList_decomp (A:Set) (l:LList A) : LList A :=
match l with
| LNil => LNil
| LCons a l' => LCons a l'
end.
Lemma LList_decompose : forall (A:Set) (l:LList A), l = LList_decomp l.
Proof.
intros.
case l.
simpl.
reflexivity.
intros.
simpl.
reflexivity.
Qed.
The Lemma that LNil
is left-neutral is easy to prove:
Lemma LAppend_LNil : forall (A:Set) (v:LList A), LAppend LNil v = v.
Proof.
intros A v.
rewrite LList_decompose with (l:= LAppend LNil v).
case v.
simpl.
reflexivity.
intros.
simpl.
reflexivity.
Qed.
But I got stuck by proving that LNil
is also right-neutral:
Lemma LAppend_v_LNil : forall (A:Set) (v:LList A), LAppend v LNil = v.
After Arthur's answer, I tried with the new equality:
Lemma LAppend_v_LNil : forall (A:Set) (v:LList A), LListEq (LAppend v LNil) v.
Proof.
intros.
cofix.
destruct v.
rewrite LAppend_LNil.
apply LNilEq.
Here I'm stuck. Coq's answer is:
1 subgoal
A : Set
a : A
v : LList A
LAppend_v_LNil : LListEq (LAppend (LCons a v) LNil) (LCons a v)
______________________________________(1/1)
LListEq (LAppend (LCons a v) LNil) (LCons a v)
After Eponier's answer I want to give it the final touch by introducing an Extensionality Axiom:
Axiom LList_ext: forall (A:Set)(l1 l2: LList A), (LListEq l1 l2 ) -> l1 = l2.
With that axiom I get the final cut of the Lemma:
Lemma LAppend_v_LNil : forall (A:Set) (v:LList A), (LAppend v LNil) = v.
Proof.
intros.
apply LList_ext.
revert v.
cofix.
intros.
destruct v. Guarded. (* now we can safely destruct v *)
- rewrite LAppend_LNil.
constructor.
- rewrite (LList_decompose (LAppend _ _)).
simpl. constructor. apply LAppend_v_LNil.
Qed.
Now, here are my final questions for this thread:
- Does such an axiom already exist in some Coq library?
- Is that axiom consistent with Coq?
- With what standard axioms of Coq (e.g. classic, UIP, fun ext, Streicher K) is that axiom inconsistent?