I'm attempting a Runge-Kutta implementation for a mass on a spring in Javascript and visualizing it with D3. The purpose is to compare it to Forward Euler and comment on the differences. My FE works fine and plots fine, but the Runge-Kutta is shooting off in a negative direction and never wrapping around.
Here's a plunkr with the vis and the code, but I'll add the JS (only for the ODE solvers) too.
// *** Functions for ODE Solvers *** //
function FEx (x, v, h)
{
return x + h*v;
}
function FEv (x, v, h)
{
var k = 1; var m = 0.5; var g = 0;
return v + h*( (-k/m)*x + g );
}
function RKx (x, v, h)
{
var k1 = FEx(x, v, h);
var k2 = FEx(x+h/2*k1, v+h/2, h);
var k3 = FEx(x+h/2*k2, v+h/2, h);
var k4 = FEx(x+h*k3, v+h, h);
return x + h/6*(k1 + 2*k2 + 2*k3 + k4);
}
function RKy (x, v, h)
{
var k1 = FEv(x, v, h);
var k2 = FEv(x+h/2, v+h/2*k1, h);
var k3 = FEv(x+h/2, v+h/2*k2, h);
var k4 = FEv(x+h, v+h*k3, h);
return v + h/6*(k1 + 2*k2 + 2*k3 + k4);
}
// FORWARD EULER
function forewardEuler (x, v, h, n)
{
// Initialize an array to hold the values
// JS doesn't really support multi-dimensional arrays
// so this is a "jagged" nested array
var values = new Array(n);
for(i = 0; i < values.length; i++)
values[i] = new Array(2);
// Initial conditions
values[0] = [x, v];
for (i = 1; i < n; ++i)
{
values[i][0] = FEx(values[i-1][0], values[i-1][1], h);
values[i][1] = FEv(values[i-1][0], values[i-1][1], h);
}
return values;
}
// 4TH ORDER RUNGE-KUTTA
function RK4 (x, v, h, n)
{
// Initialize an array to hold the values
var values = new Array(n);
for(i = 0; i < values.length; i++)
values[i] = new Array(2);
// Initial conditions
values[0] = [x, v];
for (i = 1; i < n; ++i)
{
values[i][0] = RKx(values[i-1][0], values[i-1][1], h);
values[i][1] = RKy(values[i-1][0], values[i-1][1], h);
}
return values;
}
// *** Setting up the data *** //
var rkValues = RK4(1, 0, 0.1, 100);
var feValues = forewardEuler(1, 0, 0.1, 100);