I posted a question here and was able to reproduce Claus' answer to calculate multiple r-squared values for each species in an additive model using tidyverse on iris data. However, an update occurred for packages and now R-sq values are not being calculated. Not sure why...
Here are clause response and output
library(tidyverse)
library(broom)
iris %>% nest(-Species) %>%
mutate(fit = map(data, ~mgcv::gam(Sepal.Width ~ s(Sepal.Length, bs = "cs"), data = .)),
results = map(fit, glance),
R.square = map(fit, ~ summary(.)$r.sq)) %>%
unnest(results) %>%
select(-data, -fit)
# Species R.square df logLik AIC BIC deviance df.residual
# 1 setosa 0.5363514 2.546009 -1.922197 10.93641 17.71646 3.161460 47.45399
# 2 versicolor 0.2680611 2.563623 -3.879391 14.88603 21.69976 3.418909 47.43638
# 3 virginica 0.1910916 2.278569 -7.895997 22.34913 28.61783 4.014793 47.72143
Yet my code and output produces this with the R.square <dbl [1]>
values
library(tidyverse)
library(broom)
iris %>% nest(-Species) %>%
mutate(fit = map(data, ~mgcv::gam(Sepal.Width ~ s(Sepal.Length, bs = "cs"), data = .)),
results = map(fit, glance),
R.square = map(fit, ~ summary(.)$r.sq)) %>%
unnest(results) %>%
select(-data, -fit)
Species R.square df logLik AIC BIC deviance
<fctr> <list> <dbl> <dbl> <dbl> <dbl> <dbl>
1 setosa <dbl [1]> 2.396547 -1.973593 10.74028 17.23456 3.167966
2 versicolor <dbl [1]> 2.317501 -4.021222 14.67745 21.02058 3.438361
3 virginica <dbl [1]> 2.278569 -7.895997 22.34913 28.61783 4.014793
Can anyone provide insight as to why?