I have created a maze game in JavaFX where a user can create their own maze and play it. The maze is built using buttons with CSS IDs depending on the 2-dimensional array the level is temporarily stored in.
The problem arises with the next part of the project. I have created an algorithm which generates a random maze. In order for the level to be possible, I need to check if the maze is solvable (i.e. you can get from the start (0, 3) to the finish (6, 3)).
I have created a separate project with the same display algorithm, the classes are below:
Main.java
import javafx.application.Application;
import javafx.scene.control.*;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.layout.GridPane;
public class Main extends Application{
int[][] level = {{1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1}};
public static boolean[][] status = new boolean[7][7];
public static Button[][] blankButtons = new Button[7][7];
public static Runner[][] runners = new Runner[7][7];
boolean solvable = false;
GridPane buttonGrid = new GridPane();
public static void main(String[] args){launch(args);}
public void start(Stage primaryStage) throws Exception {
Stage window = primaryStage;
for (int i = 0; i < 7; i++){
for (int j = 0; j < 7; j++){
if (level[i][j] == 1){
status[i][j] = false;
} else if (level[i][j] == 0){
status[i][j] = true;
}
}
}
GridPane mazeGrid = new GridPane();
Scene maze = new Scene(mazeGrid, 700, 700);
maze.getStylesheets().add("Main.css");
for(int i = 0; i < 7; i++){
for(int j = 0; j < 7; j++){
makeBlankButton(i, j);
}
}
//MY PREVIOUS ATTEMPT AT A FLOOD SOLVER//
// for(int i = 0; i < 7; i++){
// for(int j = 0; j < 7; j++){
// runners[i][j] = new Runner(i, j);
// runners[i][j].alive = false;
// }
// }
// Runner finish = new Runner(3, 6);
// finish.alive = false;
//
//
// runners[3][0].alive = true;
// runners[3][0].run();
// for(int i = 0; i < 7; i++){
// for(int j = 0; j < 7; j++){
// if(runners[i][j].alive){
// runners[i][j].run();
// }
// if(runners[3][1].alive){
// solvable = true;
// System.out.println(solvable);
//
// }
// System.out.println(solvable);
// }
// }
mazeGrid.getChildren().add(buttonGrid);
window.setScene(maze);
window.show();
}
public void makeBlankButton(int row, int column){
blankButtons[row][column] = new Button();
GridPane.setConstraints(blankButtons[row][column], column, row);
if (level[row][column] == 1){
blankButtons[row][column].setId("button-array-clicked");
} else if (level[row][column] == 0) {
blankButtons[row][column].setId("button-array-blank");
}
buttonGrid.getChildren().add(blankButtons[row][column]);
GridPane.setConstraints(buttonGrid, 0, 1);
if (row == 3){
if (column == 0){
blankButtons[row][column].setId("button-start");
} else if(column == 6){
blankButtons[row][column].setId("button-end");
}
}
}
}
Runner.java
public class Runner {
int x, y;
boolean alive;
Runner(int x, int y){
this.x = x;
this.y = y;
this.alive = false;
if(this.alive) {
Main.blankButtons[x][y].setId("button-water");
}
}
public void run(){
if (this.alive) {
if (Main.status[x + 1][y]) {
// Main.runners[x + 1][y] = new Runner(x + 1, y);
Main.runners[y + 1][x].alive = true;
Main.status[x][y] = false;
this.alive = false;
} else if (Main.status[y][x + 1]) {
// Main.runners[x][y + 1] = new Runner(x, y + 1);
Main.runners[x][y + 1].alive = true;
Main.status[x][y] = false;
this.alive = false;
} else if (Main.status[y][x-1]) {
// Main.runners[x - 1][y] = new Runner(x - 1, y);
Main.runners[x - 1][y].alive = true;
Main.status[x][y] = false;
this.alive = false;
} else if (Main.status[y][x-1]) {
// Main.runners[x][y - 1] = new Runner(x, y - 1);
Main.runners[x][y - 1].alive = true;
Main.status[x][y] = false;
this.alive = false;
}
}
}
}
Main.css
#button-array-clicked{
-fx-pref-width: 100px;
-fx-pref-height: 100px;
-fx-border-width: 1px;
-fx-border-color: #00aa00;
-fx-background-color: #000000;
-fx-font-size: 10px;
}
#button-array-blank{
-fx-pref-width: 100px;
-fx-pref-height: 100px;
-fx-border-width: 1px;
-fx-border-color: #00aa00;
-fx-background-color: #ffffff;
-fx-font-size: 10px;
}
#button-start{
-fx-pref-width: 100px;
-fx-pref-height: 100px;
-fx-border-width: 1px;
-fx-border-color: #00aa00;
-fx-background-color: #00bbff;
-fx-font-size: 10px;
}
#button-end{
-fx-pref-width: 100px;
-fx-pref-height: 100px;
-fx-border-width: 1px;
-fx-border-color: #00aa00;
-fx-background-color: #cc00aa;
-fx-font-size: 10px;
}
#button-water{
-fx-pref-width: 100px;
-fx-pref-height: 100px;
-fx-border-width: 1px;
-fx-border-color: #00aa00;
-fx-background-color: #0000ff;
-fx-font-size: 10px;
}
How could I go around solving the maze, while showing visibly? If the maze is solvable, I would like it to display the maze once it is complete, but I would like the program to generate a new maze to check of it is unsolvable.
Thank you
Here is a very basic implementation of Breadth First Search. It can be copy pasted into one file ( Maze.java ) and executed. It uses Main.css
posted in the question (although most if it is not used).
Buttons are active: button click changes state and restarts solve process. Please review the comments :
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import javafx.application.Application;
import javafx.beans.property.SimpleObjectProperty;
import javafx.beans.value.ChangeListener;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;
import src.tests.Cell.CellState;
public class Maze extends Application{
final int[][] level = {
{1, 1, 1, 1, 1, 1, 1},
{1, 0, 0, 0, 0, 0, 1},
{1, 0, 1, 1, 1, 1, 1},
{1, 0, 1, 0, 0, 0, 1},
{1, 0, 1, 0, 1, 0, 1},
{1, 0, 0, 0, 1, 0, 1},
{1, 1, 1, 1, 1, 1, 1}};
//represents moving in 4 directions
private final int[][] directions = {{1,0},{-1,0}, {0,1}, {0,-1}}; //down, up, right, left
private final Cell[][] cells = new Cell[level.length][level[0].length];
private final GridPane buttonGrid = new GridPane();
private BreadthFirst algo;
//Single Thread Executor guarantees that task (searches) do not run concurrently
final ExecutorService exService = Executors.newSingleThreadExecutor();
@Override
public void start(Stage primaryStage) throws Exception {
Stage window = primaryStage;
GridPane mazeGrid = new GridPane();
Scene maze = new Scene(mazeGrid, 700, 700);
maze.getStylesheets().add(getClass().
getResource("Main.css").toExternalForm());
makeBlankButton();
mazeGrid.getChildren().add(buttonGrid);
window.setScene(maze);
window.show();
solve();
}
void solve(){
algo = new BreadthFirst(cells[5][5]) ;
exService.execute(()-> algo.solve(cells[1][1]));
}
void reSolve(){
stopSolve();
resetCellsState();
solve();
}
private void stopSolve(){
if(algo != null) {
algo.stop();
}
}
private void resetCellsState() {
for(int row = 0; row < level.length; row++){
for(int column = 0; column < level[0].length; column++){
if( cells[row][column].getState() != CellState.WALL) {
cells[row][column].setState(CellState.IDLE);
}
}
}
}
public void makeBlankButton(){
//listen to cell state changes. If cell changed from or to WALL restart solve
ChangeListener<CellState> listener = (obs , oldValue, newValue)->{
if(oldValue == CellState.WALL || newValue == CellState.WALL) {
reSolve();
}
};
for(int row = 0; row < level.length; row++){
for(int column = 0; column < level[0].length; column++){
Cell cell = new Cell(row, column);
GridPane.setConstraints(cell, column, row);
if (level[row][column] == 1){
cell.setId("button-array-clicked");
cell.setState(CellState.WALL);
} else if (level[row][column] == 0) {
cell.setId("button-array-blank");
}
buttonGrid.getChildren().add(cell);
GridPane.setConstraints(buttonGrid, 0, 1);
if (row == 3){
if (column == 0){
cell.setId("button-start");
} else if(column == 6){
cell.setId("button-end");
}
}
cell.addStateListener(listener);
cells[row][column] = cell;
}
}
}
private List<Cell> getNeighbors(Cell cell) {
List<Cell> neighbors = new ArrayList<>();
int row = cell.getRow(), col = cell.getCol();
for(int[] dir : directions){
int newRow = row + dir[0] ; int newCol = col + dir[1];
if(isValidAddress(newRow, newCol)) {
neighbors.add(cells[newRow][newCol]);
}
}
return neighbors;
}
private boolean isValidAddress(int row, int col) {
if(row < 0 || col < 0) return false;
if(row >= level.length || col >= level[row].length) return false;
return true;
}
public static void main(String[] args){launch(args);}
class BreadthFirst {
private static final long DELAY = 1000;
private final LinkedList<Cell> path;
private final Cell target;
private volatile boolean isStopped;
public BreadthFirst(Cell target) {
this.target = target;
path = new LinkedList<>();
isStopped = false;
};
public boolean solve(Cell cell) {
if(cell == null || isStopped) return false;
// queue holds a nodes collections. each collection represents the path through
//which a cell has been reached, the cell being the last element in the collection
final Queue<List<Cell>> queue = new LinkedList<>(); //initialize queue
//a collection to hold the path through which a cell has been reached
//the cell it self is the last element in that collection
List<Cell> pathToCell = new ArrayList<>();
pathToCell.add(cell);
//queue does not hold a cell, but rather the whole path to a cell
//where the cell is stored as the last element
queue.add(pathToCell);
while (! queue.isEmpty() && ! isStopped) {
pathToCell = queue.remove();
//get cell (last element) from queue
cell = pathToCell.get(pathToCell.size()-1);
if(cell == null) return false;
//skip if cell is wall, or is/was explored or in path
if( cell.getState() != CellState.IDLE ) { continue; }
setCellState(cell, CellState.IS_EXPLORED);
addToPath(pathToCell);
Wait.millis(DELAY);
if(isSolved(cell)) return true;
List<Cell> nb = getNeighbors(cell);
Collections.shuffle(nb);
//loop over neighbors
for(final Cell nextCell : nb){
if(isStopped) return false;
if(nextCell.getState() == CellState.WALL) { continue; }
final List<Cell> pathToNextCell = new ArrayList<>(pathToCell);
pathToNextCell.add(nextCell);
queue.add(pathToNextCell); //add collection to the queue
}
Collections.reverse(pathToCell);
for(final Cell c : pathToCell) {
backTrack(c);
}
}
return false;
}
private void setCellState(Cell cell, CellState state) {
cell.setState(state);
}
/**
* Append collection to path
*/
private void addToPath(Collection<Cell> pathToCell) {
for(Cell c : pathToCell) {
if(isStopped)
return;
addToPath(c);
}
}
/**
* Append Cell to path
*/
private void addToPath(Cell node) {
path.push(node);
setCellState(node, CellState.PATH);
}
/**
*Is maze solved
*/
private boolean isSolved(Cell cell) {
return cell.equals(target);
}
private void backTrack(Cell cell) {
//no backtracking if back to origin
if(path.size()<=1 || isStopped) return ;
setCellState(cell, CellState.WAS_EXPLORED);
//remove from stack
if( path.peek().equals(cell)) {
path.pop();
return;
}
throw new IllegalStateException(cell+" isn't at the top of the stack");
}
void stop(){
isStopped = true;
}
}
}
class Cell extends Button{
private final SimpleObjectProperty<CellState> stateProperty
= new SimpleObjectProperty<>(CellState.IDLE);
private final int row, col;
Cell(int row, int col){
this.row = row; this.col = col;
setOnAction(e -> toggleState());
}
public enum CellState {
WALL ("black"),
IDLE ("white") , //No activity is or was performed on node
IS_EXPLORED ("blue"), //node is evaluated by path finder
WAS_EXPLORED ("grey"), //node was evaluated by path finder
PATH ("green"); // node was evaluated by path finder and added to path
public String color;
CellState(String color) {this.color = color;}
}
void toggleState(){
setState(getState() == CellState. WALL ? CellState. IDLE : CellState. WALL );
}
void setState(CellState state){
stateProperty.set(state);
setStyle("-fx-background-color:" + state.color);
}
void addStateListener(ChangeListener<CellState> listener) {
stateProperty.addListener(listener);
}
@Override
public String toString() {
return getState()+" at "+ getRow() +" - " + getCol() ;
}
@Override
public boolean equals(Object cell) {
if (cell == null || !(cell instanceof Cell))
return false;
return ((Cell) cell).getRow() == row && ((Cell) cell).getCol() == col;
}
@Override
public int hashCode() {
return 31*(row+1) + 17*(col+1);
}
int getRow() { return row; }
int getCol() { return col;}
CellState getState() {return stateProperty.get();}
}
class Wait {
public static void millis(final long millis) {
try {
TimeUnit.MILLISECONDS.sleep(millis);
} catch (final InterruptedException ex) {ex.printStackTrace();}
}
}