How to transform numpy.matrix or array to scipy sp

2019-01-10 05:44发布

问题:

For SciPy sparse matrix, one can use todense() or toarray() to transform to NumPy matrix or array. What are the functions to do the inverse?

I searched, but got no idea what keywords should be the right hit.

回答1:

You can pass a numpy array or matrix as an argument when initializing a sparse matrix. For a CSR matrix, for example, you can do the following.

>>> import numpy as np
>>> from scipy import sparse
>>> A = np.array([[1,2,0],[0,0,3],[1,0,4]])
>>> B = np.matrix([[1,2,0],[0,0,3],[1,0,4]])

>>> A
array([[1, 2, 0],
       [0, 0, 3],
       [1, 0, 4]])

>>> sA = sparse.csr_matrix(A)   # Here's the initialization of the sparse matrix.
>>> sB = sparse.csr_matrix(B)

>>> sA
<3x3 sparse matrix of type '<type 'numpy.int32'>'
        with 5 stored elements in Compressed Sparse Row format>

>>> print sA
  (0, 0)        1
  (0, 1)        2
  (1, 2)        3
  (2, 0)        1
  (2, 2)        4


回答2:

There are several sparse matrix classes in scipy.

bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix
coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format.
csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix
dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage
dok_matrix(arg1[, shape, dtype, copy]) Dictionary Of Keys based sparse matrix.
lil_matrix(arg1[, shape, dtype, copy]) Row-based linked list sparse matrix

Any of them can do the conversion.

import numpy as np
from scipy import sparse
a=np.array([[1,0,1],[0,0,1]])
b=sparse.csr_matrix(a)
print(b)

(0, 0)  1
(0, 2)  1
(1, 2)  1

See http://docs.scipy.org/doc/scipy/reference/sparse.html#usage-information .



回答3:

As for the inverse, the function is inv(A), but I won't recommend using it, since for huge matrices it is very computationally costly and unstable. Instead, you should use an approximation to the inverse, or if you want to solve Ax = b you don't really need A-1.