RaspiCam fisheye calibration with OpenCV

2019-05-20 02:49发布

问题:

I am trying to calibrate RaspiCam Fisheye lens camera with OpenCV. I am using Python example code and the cheesboard row and column numbers are also correct but somehow I can not get a successful result. I have tested with a lso much of photos below you can see them. My source code: https://github.com/jagracar/OpenCV-python-tests/blob/master/OpenCV-tutorials/cameraCalibration/cameraCalibration.py

my chess board rows and columns: rows = 9, cols = 6

but does not get a successful result

回答1:

Starting with opencv 3, the fisheye module was introduced, which manages the calibration for fisheye type lenses quite well. (At least for those who are not familiar with the mathematics behind the calibration process.)

# Checkboard dimensions
CHECKERBOARD = (6,9)
subpix_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_CHECK_COND + cv2.fisheye.CALIB_FIX_SKEW
objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)

objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.

### read images and for each image:
img = cv2.imread(fname)
img_shape = img.shape[:2]

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)
# If found, add object points, image points (after refining them)
if ret == True:
    objpoints.append(objp)
    cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria)
    imgpoints.append(corners)
###

# calculate K & D
N_imm = # number of calibration images
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_imm)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_imm)]
retval, K, D, rvecs, tvecs = cv2.fisheye.calibrate(
    objpoints,
    imgpoints,
    gray.shape[::-1],
    K,
    D,
    rvecs,
    tvecs,
    calibration_flags,
    (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))

And now that you have K and D, you can undistort:

img = # your image to undistort
map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, DIM, cv2.CV_16SC2)
undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)

this should work!

UPDATE

If you want to see the hidden parts of the image (for example the portion outside the yellow box in the above image), after the calibration, you need this:

img = cv2.imread(img_path)
img_dim = img.shape[:2][::-1]  

DIM = # dimension of the images used for calibration

scaled_K = K * img_dim[0] / DIM[0]  
scaled_K[2][2] = 1.0  
new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(scaled_K, D,
    img_dim, np.eye(3), balance=balance)
map1, map2 = cv2.fisheye.initUndistortRectifyMap(scaled_K, D, np.eye(3),
    new_K, img_dim, cv2.CV_16SC2)
undist_image = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR,
    borderMode=cv2.BORDER_CONSTANT)

Now, by varying the balance value you should decrease or increase the size of the final immage (compared to the image above, practically the yellow rectangle).

From OpenCV API: balance: Sets the new focal length in range between the min focal length and the max focal length. Balance is in range of [0, 1].



回答2:

First at all, as far as I can see your camera has fisheye optics, but it doesn't give all the surface of fisheye image (usually it is a circle inside black frame). The second. The code you are using is for usual camera or wide angle (90-110 degrees) It's not for fisheye (~ 180 degrees). Third. You can use source code URL link from HERE