可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I thought it would be nice to do something like this (with the lambda doing a yield return):
public IList<T> Find<T>(Expression<Func<T, bool>> expression) where T : class, new()
{
IList<T> list = GetList<T>();
var fun = expression.Compile();
var items = () => {
foreach (var item in list)
if (fun.Invoke(item))
yield return item; // This is not allowed by C#
}
return items.ToList();
}
However, I found out that I can't use yield in anonymous method. I'm wondering why. The yield docs just say it is not allowed.
Since it wasn't allowed I just created List and added the items to it.
回答1:
Eric Lippert recently wrote a series of blog posts about why yield is not allowed in some cases.
- Part 1
- Part 2
- Part 3
- Part 4
- Part 5
- Part 6
EDIT2:
- Part 7 (this one was posted later and specifically addresses this question)
You will probably find the answer there...
EDIT1: this is explained in the comments of Part 5, in Eric's answer to Abhijeet Patel's comment:
Q :
Eric,
Can you also provide some insight into
why "yields" are not allowed inside an
anonymous method or lambda expression
A :
Good question. I would love to have
anonymous iterator blocks. It would be
totally awesome to be able to build
yourself a little sequence generator
in-place that closed over local
variables. The reason why not is
straightforward: the benefits don't
outweigh the costs. The awesomeness of
making sequence generators in-place is
actually pretty small in the grand
scheme of things and nominal methods
do the job well enough in most
scenarios. So the benefits are not
that compelling.
The costs are large. Iterator
rewriting is the most complicated
transformation in the compiler, and
anonymous method rewriting is the
second most complicated. Anonymous
methods can be inside other anonymous
methods, and anonymous methods can be
inside iterator blocks. Therefore,
what we do is first we rewrite all
anonymous methods so that they become
methods of a closure class. This is
the second-last thing the compiler
does before emitting IL for a method.
Once that step is done, the iterator
rewriter can assume that there are no
anonymous methods in the iterator
block; they've all be rewritten
already. Therefore the iterator
rewriter can just concentrate on
rewriting the iterator, without
worrying that there might be an
unrealized anonymous method in there.
Also, iterator blocks never "nest",
unlike anonymous methods. The iterator
rewriter can assume that all iterator
blocks are "top level".
If anonymous methods are allowed to
contain iterator blocks, then both
those assumptions go out the window.
You can have an iterator block that
contains an anonymous method that
contains an anonymous method that
contains an iterator block that
contains an anonymous method, and...
yuck. Now we have to write a rewriting
pass that can handle nested iterator
blocks and nested anonymous methods at
the same time, merging our two most
complicated algorithms into one far
more complicated algorithm. It would
be really hard to design, implement,
and test. We are smart enough to do
so, I'm sure. We've got a smart team
here. But we don't want to take on
that large burden for a "nice to have
but not necessary" feature. -- Eric
回答2:
Eric Lippert has written an excellent series of articles on the limitations (and design decisions influencing those choices) on iterator blocks
In particular iterator blocks are implemented by some sophisticated compiler code transformations. These transformations would impact with the transformations which happen inside anonymous functions or lambdas such that in certain circumstances they would both try to 'convert' the code into some other construct which was incompatible with the other.
As a result they are forbidden from interaction.
How iterator blocks work under the hood is dealt with well here.
As a simple example of an incompatibility:
public IList<T> GreaterThan<T>(T t)
{
IList<T> list = GetList<T>();
var items = () => {
foreach (var item in list)
if (fun.Invoke(item))
yield return item; // This is not allowed by C#
}
return items.ToList();
}
The compiler is simultaneously wanting to convert this to something like:
// inner class
private class Magic
{
private T t;
private IList<T> list;
private Magic(List<T> list, T t) { this.list = list; this.t = t;}
public IEnumerable<T> DoIt()
{
var items = () => {
foreach (var item in list)
if (fun.Invoke(item))
yield return item;
}
}
}
public IList<T> GreaterThan<T>(T t)
{
var magic = new Magic(GetList<T>(), t)
var items = magic.DoIt();
return items.ToList();
}
and at the same time the iterator aspect is trying to do it's work to make a little state machine. Certain simple examples might work with a fair amount of sanity checking (first dealing with the (possibly arbitrarily) nested closures) then seeing if the very bottom level resulting classes could be transformed into iterator state machines.
However this would be
- Quite a lot of work.
- Couldn't possibly work in all cases without at the very least the iterator block aspect being able to prevent the closure aspect from applying certain transformations for efficiency (like promoting local variables to instance variables rather than a fully fledged closure class).
- If there was even a slight chance of overlap where it was impossible or sufficiently hard to not be implemented then the number of support issues resulting would likely be high since the subtle breaking change would be lost on many users.
- It can be very easily worked around.
In your example like so:
public IList<T> Find<T>(Expression<Func<T, bool>> expression)
where T : class, new()
{
return FindInner(expression).ToList();
}
private IEnumerable<T> FindInner<T>(Expression<Func<T, bool>> expression)
where T : class, new()
{
IList<T> list = GetList<T>();
var fun = expression.Compile();
foreach (var item in list)
if (fun.Invoke(item))
yield return item;
}
回答3:
Unfortunately I don't know why they didn't allow this, since of course it's entirely possible to do envision how this would work.
However, anonymous methods are already a piece of "compiler magic" in the sense that the method will be extracted either to a method in the existing class, or even to a whole new class, depending on whether it deals with local variables or not.
Additionally, iterator methods using yield
is also implemented using compiler magic.
My guess is that one of these two makes the code un-identifiable to the other piece of magic, and that it was decided to not spend time on making this work for the current versions of the C# compiler. Of course, it might not be a concious choice at all, and that it just doesn't work because nobody thought to implement it.
For a 100% accurate question I would suggest you use the Microsoft Connect site and report a question, I'm sure you'll get something usable in return.
回答4:
I would do this:
IList<T> list = GetList<T>();
var fun = expression.Compile();
return list.Where(item => fun.Invoke(item)).ToList();
Of course you need the System.Core.dll referenced from .NET 3.5 for the Linq method. And include:
using System.Linq;
Cheers,
Sly
回答5:
Maybe its just a syntax limitation. In Visual Basic .NET, which is very similar to C#, it is perfectly possible while awkward to write
Sub Main()
Console.Write("x: ")
Dim x = CInt(Console.ReadLine())
For Each elem In Iterator Function()
Dim i = x
Do
Yield i
i += 1
x -= 1
Loop Until i = x + 20
End Function()
Console.WriteLine($"{elem} to {x}")
Next
Console.ReadKey()
End Sub
Also note the parentheses ' here
; the lambda function Iterator Function
...End Function
returns an IEnumerable(Of Integer)
but is not such an object itself. It must be called to get that object.
The converted code by [1] raises errors in C# 7.3 (CS0149):
static void Main()
{
Console.Write("x: ");
var x = System.Convert.ToInt32(Console.ReadLine());
// ERROR: CS0149 - Method name expected
foreach (var elem in () =>
{
var i = x;
do
{
yield return i;
i += 1;
x -= 1;
}
while (!i == x + 20);
}())
Console.WriteLine($"{elem} to {x}");
Console.ReadKey();
}
I strongly disagree to the reason given in the other answers that it's difficult for the compiler to handle. The Iterator Function()
you see in the VB.NET example is specifically created for lambda iterators.
In VB, there is the Iterator
keyword; it has no C# counterpart. IMHO, there is no real reason this is not a feature of C#.
So if you really, really want anonymous iterator functions, currently use Visual Basic or (I haven't checked it) F#, as stated in a comment of Part #7 in @Thomas Levesque's answer (do Ctrl+F for F#).