Say I have two random variables:
X ~ Beta(α1,β1)
Y ~ Beta(α2,β2)
I would like to compute distribution of Z = XY (the product of the random variables)
With scipy
, I can get the pdf of a single Beta with:
from scipy.stats import beta
rv = beta(a, b)
x = np.linspace(start=0, stop=1, num=200)
my_pdf = rv.pdf(x)
But what about the product of two Betas? Can I do this analytically? (Python/Julia/R solutions are fine).
For an analytical solution, have a look at this paper and this answer.
A numerical approach in R
set.seed(1) # for reproducability
n <- 100000 # number of random variables
# first beta distribution
a1 <- 0.5
b1 <- 0.9
X <- rbeta(n, a1, b1)
# second beta distribution
a2 <- 0.9
b2 <- 0.5
Y <- rbeta(n, a2, b2)
# calculate product
Z <- X * Y
# Have a look at the distributions
plot(density(Z), col = "red", main = "Distributions")
lines(density(X), lty = 2)
lines(density(Y), lty = 2)
FWIW, same in Python
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
N = 100000
y = stats.beta(.5, .9).rvs(N)
x = stats.beta(.9, .5).rvs(N)
z = x*y
dens_z = sm.nonparametric.KDEUnivariate(z)
dens_z.fit()
dens_x = sm.nonparametric.KDEUnivariate(x)
dens_x.fit()
dens_y = sm.nonparametric.KDEUnivariate(y)
dens_y.fit()
fig, ax = plt.subplots()
ax.plot(dens_z.support, dens_z.density, label='z')
ax.plot(dens_x.support, dens_x.density, label='x')
ax.plot(dens_y.support, dens_y.density, label='y')
ax.legend()
plt.draw_if_interactive()