I am trying to write a function for computing natural division in Coq and I am having some trouble defining it since it is not structural recursion.
My code is:
Inductive N : Set :=
| O : N
| S : N -> N.
Inductive Bool : Set :=
| True : Bool
| False : Bool.
Fixpoint sum (m :N) (n : N) : N :=
match m with
| O => n
| S x => S ( sum x n)
end.
Notation "m + n" := (sum m n) (at level 50, left associativity).
Fixpoint mult (m :N) (n : N) : N :=
match m with
| O => O
| S x => n + (mult x n)
end.
Notation "m * n" := (mult m n) (at level 40, left associativity).
Fixpoint pred (m : N) : N :=
match m with
| O => S O
| S x => x
end.
Fixpoint resta (m:N) (n:N) : N :=
match n with
| O => m
| S x => pred (resta m x)
end.
Notation "m - x" := (resta m x) (at level 50, left associativity).
Fixpoint leq_nat (m : N) (n : N) : Bool :=
match m with
| O => True
| S x => match n with
| O => False
| S y => leq_nat x y
end
end.
Notation "m <= n" := (leq_nat m n) (at level 70).
Fixpoint div (m : N) (n : N) : N :=
match n with
| O => O
| S x => match m <= n with
| False => O
| True => pred (div (m-n) n)
end
end.
As you can see, Coq does not like my function div, it says
Error: Cannot guess decreasing argument of fix
.
How can I supply in Coq a termination proof for this function? I can prove that if n>O ^ n<=m -> (m-n) < m.
The simplest strategy in this case is probably to use the Program
extension together with a measure
. You will then have to provide a proof that the arguments used in the recursive call are smaller than the top level ones according to the measure.
Require Coq.Program.Tactics.
Require Coq.Program.Wf.
Fixpoint toNat (m : N) : nat :=
match m with O => 0 | S n => 1 + (toNat n) end.
Program Fixpoint div (m : N) (n : N) {measure (toNat m)}: N :=
match n with
| O => O
| S x => match m <= n with
| False => O
| True => pred (div (m-n) n)
end
end.
Next Obligation.
(* your proof here *)
Although gallais's answer is definitely the way to go in general, I should point out that we can define division on the natural numbers in Coq as a simple fixpoint. Here, I'm using the definition of nat
in the standard library for simplicity.
Fixpoint minus (n m : nat) {struct n} : nat :=
match n, m with
| S n', S m' => minus n' m'
| _, _ => n
end.
Definition leq (n m : nat) : bool :=
match minus n m with
| O => true
| _ => false
end.
Fixpoint div (n m : nat) {struct n} : nat :=
match m with
| O => O
| S m' =>
if leq (S m') n then
match n with
| O => O (* Impossible *)
| S n' => S (div (minus n' m') (S m'))
end
else O
end.
Compute div 6 3.
Compute div 7 3.
Compute div 9 3.
The definition of minus
is essentially the one from the standard library. Notice on the second branch of that definition we return n
. Thanks to this trick, Coq's termination checker can detect that minus n' m'
is structurally smaller than S n'
, which allows us to perform the recursive call to div
.
There's actually an even simpler way of doing this, although a bit harder to understand: you can check whether the divisor is smaller and perform the recursive call in a single step.
(* Divide n by m + 1 *)
Fixpoint div'_aux n m {struct n} :=
match minus n m with
| O => O
| S n' => S (div'_aux n' m)
end.
Definition div' n m :=
match m with
| O => O (* Arbitrary *)
| S m' => div'_aux n m'
end.
Compute div' 6 3.
Compute div' 7 3.
Compute div' 9 3.
Once again, because of the form of the minus
function, Coq's termination checker knows that n'
in the second branch of div'_aux
is a valid argument to a recursive call. Notice also that div'_aux
is dividing by m + 1
.
Of course, this whole thing relies on a clever trick that requires understanding the termination checker in detail. In general, you have to resort to well-founded recursion, as gallais showed.