When running keras model inside Jupyter notebook with "verbose=1" option, I started getting not single line progress status updates as before, but a flood of status lines updated at batch. See attached picture. Restarting jupyter or the browser is not helping. Jupyter notebook server is: 5.6.0, keras is 2.2.2, Python is Python 3.6.5 Please help.
cell content:
history = model.fit(x=train_df_scaled, y=train_labels, batch_size=BATCH_SIZE, epochs=EPOCHS, verbose=1, validation_data=(validation_df_scaled, validation_labels), shuffle=True)
output flood example: (it is thousands of lines like this)
loss: 217.5794 - mean_absolute_error: 11.166 - ETA: 32:42 - loss: 216.9500 - mean_absolute_error: 11.165 - ETA: 32:21 - loss: 216.6378 - mean_absolute_error: 11.164 - ETA: 32:00 - loss: 216.0345 - mean_absolute_error: 11.164 - ETA: 31:41 - loss: 215.6621 - mean_absolute_error: 11.166 - ETA: 31:21 - loss: 215.4639 - mean_absolute_error: 11.171 - ETA: 31:02 - loss: 215.1654 - mean_absolute_error: 11.173 - ETA: 30:44 - loss: 214.6583 - mean_absolute_error: 11.169 - ETA: 30:27 - loss: 213.8844 - mean_absolute_error: 11.164 - ETA: 30:10 - loss: 213.3308 - mean_absolute_error: 11.163 - ETA: 29:54 - loss: 213.1179 - mean_absolute_error: 11.167 - ETA: 29:37 - loss: 212.8138 - mean_absolute_error: 11.169 - ETA: 29:25 - loss: 212.7157 - mean_absolute_error: 11.174 - ETA: 29:11 - loss: 212.5421 - mean_absolute_error: 11.177 - ETA: 28:56 - loss: 212.1867 - mean_absolute_error: 11.178 - ETA: 28:42 - loss: 211.8032 - mean_absolute_error: 11.180 - ETA: 28:28 - loss: 211.4079 - mean_absolute_error: 11.179 - ETA: 28:15 - loss: 211.2733 - mean_absolute_error: 11.182 - ETA: 28:02 - loss: 210.8588 - mean_absolute_error: 11.179 - ETA: 27:50 - loss: 210.4498 - mean_absolute_error: 11.178 - ETA: 27:37 - loss: 209.9327 - mean_absolute_error: 11.176 - ETA: 27: