I'm trying to code a CNN which distinguishes between cats and dogs. I have set my labels such that dog:0 and cat:1, so I'm expecting my CNN to output a 0 if it's a dog and 1 if it's a cat. However, it is doing the opposite instead (giving a 0 when its a cat and a 1 for a dog). Please review my code and look where I went wrong. Thanks
I'm currently on python 3.6.8, using jupyter notebook (all the code inside is me copy-pasting different parts of the code from the jupyter notebook)
import os
import cv2
from random import shuffle
import numpy as np
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten, Dropout, BatchNormalization
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
%matplotlib inline
train_dir = r'C:\Users\tohho\Desktop\Python pypipapp\Machine Learning\data\PetImages\train'
test_dir = r'C:\Users\tohho\Desktop\Python pypipapp\Machine Learning\data\PetImages\test1'
IMG_WIDTH = 100
IMG_HEIGHT = 100
batch_size = 32
######## THIS IS WHERE I LABELLED 0 FOR DOG AND 1 FOR CAT ##########
filenames = os.listdir(train_dir)
categories = []
for filename in filenames:
category = filename.split('.')[0]
if category == 'cat':
categories.append(1)
elif category == 'dog':
categories.append(0)
df = pd.DataFrame({'filename':filenames, 'class':categories}) # making the dataframe
#### I SPLIT THE DATA INTO TRAIN AND VALIDATION DATASETS ####
df_train, df_validate = train_test_split(df, test_size=0.25) # splitting data for train/test
# need to reset index for both dataframs so imagedatagenerator works properly
df_train = df_train.reset_index(drop=True)
df_validate = df_validate.reset_index(drop=True)
print(df_train['class'].value_counts())
print(df_validate['class'].value_counts())
len_training = df_train.shape[0]
len_validate = df_validate.shape[0]
print('{} training eg, {} test eg'.format(len_training, len_validate))
#### CREATE IMAGE DATA GENERATORS ####
train_datagen = ImageDataGenerator(rescale=1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
# our train_datagen generator will use the following transformations on the images
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_dataframe(df_train,
train_dir,
target_size=(IMG_WIDTH, IMG_HEIGHT),
batch_size=batch_size,
x_col='filename',
y_col='class',
class_mode = 'binary')
# generator = ImageDataGenerator(*args).flow_from_dataframe(dataframe, directory, target_size,
# batch_size, x_col, y_col, class_mode)
# your dataframe shoudl be in the format such that x_col = features, y_col = class/label
# binary class mode since output is either 0(dog) or 1(cat)
validation_generator = validation_datagen.flow_from_dataframe(df_validate,
train_dir,
target_size=(IMG_WIDTH, IMG_HEIGHT),
x_col='filename',
y_col='class',
class_mode='binary',
batch_size=batch_size)
########## BUILDING MODEL ############
model = Sequential()
model.add(Conv2D(32, (3,3), input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3,3), input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(128, (3,3), input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten()) # remember to flatten conv2d to dense layer
model.add(Dense(256))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(Dense(1))
model.add(Activation('sigmoid'))
# since we have only 1 output with range [0,1], we use sigmoid
# if there were n categories, use softmax
# binary_crossentropy since output is either 0,1
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
earlystop = EarlyStopping(monitor='val_loss', patience=3) # stops learning if val_loss doesnt improve
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=2,
verbose=1,
factor=0.5,
min_lr=0.000001)
# reduces learning rate if val_acc doesnt improve
callbacks = [earlystop, learning_rate_reduction]
##### FIT THE MODEL #####
epochs = 50
model.fit_generator(train_generator,
steps_per_epoch=len_training//batch_size,
verbose=1,
epochs=epochs,
validation_data=validation_generator,
validation_steps=len_validate//batch_size,
callbacks=callbacks) # fitting model
######### PREDICTING #############
output_generator = validation_datagen.flow_from_dataframe(df_output,
outputdir,
x_col='filename',
y_col=None,
class_mode=None,
target_size=(IMG_WIDTH, IMG_HEIGHT),
shuffle=False,
batch_size=batch_size)
predictions = model.predict_generator(output_generator,
steps=np.ceil(len_output/batch_size))
df_output['probability'] = predictions
df_output['label'] = np.where(df_output['probability'] > 0.5, 'cat','dog')
df_output.head()
The CNN gives the opposite of the correct answer, and when reversing the outputs, I get the expected results (correct identification and accuracy).
I know that just changing the line df_output['label'] = np.where(df_output['probability'] > 0.5, 'cat','dog')
to df_output['label'] = np.where(df_output['probability'] < 0.5, 'cat','dog')
settles the problem, but that's not helping me figure out why the output of the CNN is reversed.