I'm trying to figure out how an operating system handles multiple unrelated processes loading the same DLL/shared library. The OSes I'm concerned with are Linux and Windows, but to a lesser extent Mac as well. I presume the answers to my questions will be identical for all operating systems.
I'm particularly interested in regards to explicit linking, but I'd also like to know for implicit linking. I presume the answers for both will also be identical.
This is the best explanation I've found so far concerning Windows:
"The system maintains a per-process reference count on all loaded modules. Calling LoadLibrary increments the reference count. Calling the FreeLibrary or FreeLibraryAndExitThread function decrements the reference count. The system unloads a module when its reference count reaches zero or when the process terminates (regardless of the reference count)." - http://msdn.microsoft.com/en-us/library/windows/desktop/ms684175%28v=vs.85%29.aspx
But it leaves some questions.
1.) Do unrelated processes load the same DLL redundantly (that is, the DLL exists more than once in memory) instead of using reference counting? ( IE, into each process's own "address space" as I think I understand it )
if the DLL is unloaded as soon as a process is terminated, that leads me to believe the other processes using exact same DLL will have a redundantly loaded into memory, otherwise the system should not be allowed to ignore the reference count.
2.) if that is true, then what's the point of reference counting DLLs when you load them multiple times in the same process? What would be the point of loading the same DLL twice into the same process? The only feasible reason I can come up with is that if an EXE references two DLLs, and one of the DLLs references the other, there will be at least two LoadLibrar() and two FreeLibrary() calls for the same library.
I know it seems like I'm answering my own questions here, but I'm just postulating. I'd like to know for sure.