I have a code for sequentially whether every pair of cartesian coordinates found in my DataFrame
fall into certain geometric enclosed areas. But it is rather slow, I suspect because it is not vectorized. Here is an example:
from matplotlib.patches import Rectangle
r1 = Rectangle((0,0), 10, 10)
r2 = Rectangle((50,50), 10, 10)
df = pd.DataFrame([[1,2],[-1,5], [51,52]], columns=['x', 'y'])
for j in range(df.shape[0]):
coordinates = df.x.iloc[j], df.y.iloc[j]
if r1.contains_point(coordinates):
df['location'].iloc[j] = 0
else r2.contains_point(coordinates):
df['location'].iloc[j] = 1
Can someone propose an approach for speed-up?
It's better to convert the rectangular patches into an array and work on it after deducing the extent to which they are spread out.
def seqcheck_vect(df):
xy = df[["x", "y"]].values
e1 = np.asarray(rec1.get_extents())
e2 = np.asarray(rec2.get_extents())
r1m1, r1m2 = np.min(e1), np.max(e1)
r2m1, r2m2 = np.min(e2), np.max(e2)
out = np.where(((xy >= r1m1) & (xy <= r1m2)).all(axis=1), 0,
np.where(((xy >= r2m1) & (xy <= r2m2)).all(axis=1), 1, np.nan))
return df.assign(location=out)
For the given sample the function outputs:
benchmarks:
def loopy_version(df):
for j in range(df.shape[0]):
coordinates = df.x.iloc[j], df.y.iloc[j]
if rec1.contains_point(coordinates):
df.loc[j, "location"] = 0
elif rec2.contains_point(coordinates):
df.loc[j, "location"] = 1
else:
pass
return df
testing on a DF
of 10K rows:
np.random.seed(42)
df = pd.DataFrame(np.random.randint(0, 100, (10000,2)), columns=list("xy"))
# check if both give same outcome
loopy_version(df).equals(seqcheck_vect(df))
True
%timeit loopy_version(df)
1 loop, best of 3: 3.8 s per loop
%timeit seqcheck_vect(df)
1000 loops, best of 3: 1.73 ms per loop
So, the vectorized approach is approximately 2200 times faster compared to the loopy one.