In pandas, given this data frame:
df = pd.DataFrame({'l':['a','b','a','c','b','b','a','b','b','a'], 'v':['x','x','y','y','y','x','x','y','x','y'],'n':[1,2,1,2,2,1,2,1,1,2], 'g':[0,0,0,0,0,1,1,1,1,1]})
What is the best solution to rename the elements of v
based on some conditional statements applied to the data frame?
Basically, for each row (regardless of whether g == 0
or g == 1
):
if df.l==a and df.n==1:
df.v='val1'
elif df.l==a and df.n==2:
df.v='val2'
elif df.l==b and df.n==1:
df.v='val3'
elif df.l==b and df.n==2:
df.v='val4'
You can simply write them out with a boolean mask:
df.loc[(df.l == 'a') & (df.n == 1), 'v'] = 'val1'
df.loc[(df.l == 'a') & (df.n == 2), 'v'] = 'val2'
df.loc[(df.l == 'b') & (df.n == 1), 'v'] = 'val3'
df.loc[(df.l == 'b') & (df.n == 2), 'v'] = 'val4'
In [11]: df
Out[11]:
g l n v
0 0 a 1 val1
1 0 b 2 val4
2 0 a 1 val1
3 0 c 2 y
4 0 b 2 val4
5 1 b 1 val3
6 1 a 2 val2
7 1 b 1 val3
8 1 b 1 val3
9 1 a 2 val2
In more generality you can use enumerate and itertools.product (similar to Philip's answer):
from itertools import product
lhs_values, rhs_values = ['a', 'b'], [1, 2]
for i, (lhs, rhs) in enumerate(product(lhs_values, rhs_values)):
df.loc[(df.l == lhs) & (df.n == rhs), 'v'] = 'val%s' % (i + 1)
Perhaps you'd just use the unique column values:
for i, (lhs, rhs) in enumerate(product(df.l.unique(), df.n.unique())):
df.loc[(df.l == lhs) & (df.n == rhs), 'v'] = 'val%s' % (i + 1)
In [21]: df
Out[21]:
g l n v
0 0 a 1 val1
1 0 b 2 val4
2 0 a 1 val1
3 0 c 2 val6
4 0 b 2 val4
5 1 b 1 val3
6 1 a 2 val2
7 1 b 1 val3
8 1 b 1 val3
9 1 a 2 val2
I'm not sure if you're just giving an example DataFrame
or this is your actual DataFrame
, but your conditions are a Cartesian product which you can construct using itertools
and loop over the left and right hand side, along with that pair's replacement.
from itertools import product
lhs_values = 'a', 'b'
rhs_values = 1, 2
rep_values = ['val%d' % d for d in range(1, 5)]
lhs_rhs = list(product(lhs_values, rhs_values))
it = zip(*(zip(*lhs_rhs) + [tuple(rep_values)]))
for lhs, rhs, rep in it:
df.v[(df.l == lhs) & (df.n == rhs)] = rep
A different approach using map
:
value_map = {
('a', 1): 'val1',
('a', 2): 'val2',
('b', 1): 'val3',
('b', 2): 'val4'
}
df.v = map(value_map.get, zip(df.l, df.n))
EDIT: An alternative following Phillip Cloud's comment: if you want to keep the original df.v
values in case there is no match in the dictionary, you can do this instead:
df.v = map(lambda x, y, z: value_map.get((x, y), z), df.l, df.n, df.v)