I have a big 1D array of data. I have a starts
array of indexes into that data where important things happened. I want to get an array of ranges so that I get windows of length L
, one for each starting point in starts
. Bogus sample data:
data = np.linspace(0,10,50)
starts = np.array([0,10,21])
length = 5
I want to instinctively do something like
data[starts:starts+length]
But really, I need to turn starts
into 2D array of range "windows." Coming from functional languages, I would think of it as a map
from a list to a list of lists, like:
np.apply_along_axis(lambda i: np.arange(i,i+length), 0, starts)
But that won't work because apply_along_axis
only allows scalar return values.
You can do this:
pairs = np.vstack([starts, starts + length]).T
ranges = np.apply_along_axis(lambda p: np.arange(*p), 1, pairs)
data[ranges]
Or you can do it with a list comprehension:
data[np.array([np.arange(i,i+length) for i in starts])]
Or you can do it iteratively. (Bleh.)
Is there a concise, idiomatic way to slice into an array at certain start points like this? (Pardon the numpy newbie-ness.)
data = np.linspace(0,10,50)
starts = np.array([0,10,21])
length = 5
For a NumPy only way of doing this, you can use numpy.meshgrid()
as described here
http://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html
As hpaulj pointed out in the comments, meshgrid actually isn't needed for this problem as you can use array broadcasting.
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
# indices = sum(np.meshgrid(np.arange(length), starts))
indices = np.arange(length) + starts[:, np.newaxis]
# array([[ 0, 1, 2, 3, 4],
# [10, 11, 12, 13, 14],
# [21, 22, 23, 24, 25]])
data[indices]
returns
array([[ 0. , 0.20408163, 0.40816327, 0.6122449 , 0.81632653],
[ 2.04081633, 2.24489796, 2.44897959, 2.65306122, 2.85714286],
[ 4.28571429, 4.48979592, 4.69387755, 4.89795918, 5.10204082]])
If you need to do this a lot of time, you can use as_strided()
to create a sliding windows array of data
data = np.linspace(0,10,50000)
length = 5
starts = np.random.randint(0, len(data)-length, 10000)
from numpy.lib.stride_tricks import as_strided
sliding_window = as_strided(data, (len(data) - length + 1, length),
(data.itemsize, data.itemsize))
Then you can use:
sliding_window[starts]
to get what you want.
It's also faster than creating the index array.