You can see this code in action here: http://bl.ocks.org/2626142
This code draws a line chart, then transitions between 3 sample data sets. When moving from a small data set to a larger one, the extra data points suddenly appear instead of smoothly unfolding from the existing line.
When moving from a larger data set to a smaller one, the line is suddenly truncated before transitioning to fill the whole chart.
With this code there are sudden additions and deletions to the line and gridlines. How do I eliminate those?
var data = [
[0,2,3,2,8],
[2,4,1,5,3],
];
var data2 = [
[0,1,2,3,4,5],
[9,8,7,6,5,6],
];
var data3 = [
[1,3,2],
[0,8,5],
];
var w = 300,
h = 100;
var chart = d3.select('body').append('div')
.attr('class', 'chart')
.append('svg:svg')
.attr('width', w)
.attr('height', h);
var color = d3.scale.category10();
function drawdata(data, chart) {
var num = data[0].length-1;
var x = d3.scale.linear().domain([0, num]).range([0,w]);
var y = d3.scale.linear().domain([0, 10]).range([h, 0]);
var line = d3.svg.line()
.x(function(d, i) { return x(i); })
.y(function(d) { return y(d); });
var flat = d3.svg.line()
.x(function(d, i) { return x(i); })
.y(y(-1));
var lines = chart.selectAll('.line')
.data(data);
lines.enter().append('path')
.attr('class', 'line')
.style('stroke', function(d,i) { return color(i); })
.attr('d', line);
lines.transition()
.ease('linear')
.duration(500)
.attr('d', line);
lines.exit().remove();
// legend
var ticks = chart.selectAll('line')
.data(x.ticks(num));
ticks.enter().append('line')
.attr('x1', x)
.attr('x2', x)
.attr('y1', 0)
.attr('y2', h)
.attr('class', 'rule');
ticks.transition()
.ease('linear')
.duration(500)
.attr('x1', x)
.attr('x2', x)
.attr('y1', 0)
.attr('y2', h);
ticks.exit().remove();
}
var dats = [data, data2, data3];
function next() {
var it = dats.shift();
dats.push(it);
drawdata(it, chart);
}
setInterval(next, 2000);
next();
I faced a similar problem recently, and solved it using a custom interpolator for paths:
// Add path interpolator to d3
d3.interpolators.push(function(a, b) {
var isPath, isArea, interpolator, ac, bc, an, bn;
// Create a new array of a given length and fill it with the given value
function fill(value, length) {
return d3.range(length)
.map(function() {
return value;
});
}
// Extract an array of coordinates from the path string
function extractCoordinates(path) {
return path.substr(1, path.length - (isArea ? 2 : 1)).split('L');
}
// Create a path from an array of coordinates
function makePath(coordinates) {
return 'M' + coordinates.join('L') + (isArea ? 'Z' : '');
}
// Buffer the smaller path with coordinates at the same position
function bufferPath(p1, p2) {
var d = p2.length - p1.length;
// Paths created by d3.svg.area() wrap around such that the 'end'
// of the path is in the middle of the list of coordinates
if (isArea) {
return fill(p1[0], d/2).concat(p1, fill(p1[p1.length - 1], d/2));
} else {
return fill(p1[0], d).concat(p1);
}
}
// Regex for matching the 'd' attribute of SVG paths
isPath = /M-?\d*\.?\d*,-?\d*\.?\d*(L-?\d*\.?\d*,-?\d*\.?\d*)*Z?/;
if (isPath.test(a) && isPath.test(b)) {
// A path is considered an area if it closes itself, indicated by a trailing 'Z'
isArea = a[a.length - 1] === 'Z';
ac = extractCoordinates(a);
bc = extractCoordinates(b);
an = ac.length;
bn = bc.length;
// Buffer the ending path if it is smaller than the first
if (an > bn) {
bc = bufferPath(bc, ac);
}
// Or, buffer the starting path if the reverse is true
if (bn > an) {
ac = bufferPath(ac, bc);
}
// Create an interpolater with the buffered paths (if both paths are of the same length,
// the function will end up being the default string interpolator)
interpolator = d3.interpolateString(bn > an ? makePath(ac) : a, an > bn ? makePath(bc) : b);
// If the ending value changed, make sure the final interpolated value is correct
return bn > an ? interpolator : function(t) {
return t === 1 ? b : interpolator(t);
};
}
});
Here's what the original gist looks like with the new interpolator: http://bl.ocks.org/4535474.
Its approach is to 'buffer' the smaller dataset's path by inserting zero-length line segments at the beginning. The effect is that new segments expand out of a single point at the start of the line, and unused segments similarly collapse down to a single point.
Transitioning between datasets of different sizes (apparently) isn't a common problem, and doesn't have a universal solution. Because I was visualizing time-series data and transitioning between daily/weekly/monthly intervals, I needed the segments towards the end of the path to maintain visual continuity. I can imagine a case in which you'd want to do the same for the beginning of the path, or perhaps expand/contract the path by uniformly buffering segments throughout. Either way the same approach will work.