英特尔CPU SIMD前缀和英特尔CPU SIMD前缀和(SIMD prefix sum on In

2019-05-14 02:36发布

我需要实现一个前缀和算法,将需要它来尽可能快。 例如:

[3, 1,  7,  0,  4,  1,  6,  3]
should give
[3, 4, 11, 11, 15, 16, 22, 25]

有没有办法做到这一点使用SSE / MMX / SIMD CPU指令?

我的第一个想法就是总结并行每一对递归直到所有的款项已经计算出来,如下图所示!

       //in parallel do 
        for (int i = 0; i<z.length; i++){
            z[i] = x[i<<1] + x[(i<<1)+1];
        }

为了使算法多一点点清晰的“Z”是不是最后的输出中

而是用来计算输出中

        int[] w = computePrefixSum(z);
        for (int i = 1; i<ouput.length; i++){
            ouput[i] = (i%2==0) ? (x[i] + ouput[i-1]) :  w[(i-1)>>1];
        }

Answer 1:

最快的并行前缀和算法,我知道的是在和分两道并行运行,并在第二次使用SSE为好。

在第一遍你计算并行的部分和并存储所述总和为每个部分和。 在第二遍你从前面部分和总和添加到下一个部分和。 你可以(使用OpenMP如)同时运行通过并行使用多个线程。 还可以使用SIMD因为一个恒定值的第二通被加入到每个部分和。

假设n阵列,元素m芯,和一个SIMD宽度w的时间成本应

n/m + n/(m*w) = (n/m)*(1+1/w)

由于拳头通不使用SIMD时间成本总是会大于n/m

例如,对于四个核为4的SIMD_width(4个32位与SSE浮动)的成本将是5n/16 。 或大于它有一个时间成本的顺序代码快约3.2倍n 。 使用超线程的加快会更大依然。

在特殊情况下,可能使用SIMD第一遍也是如此。 然后,时间成本是根本

2*n/(m*w)

我张贴,它使用的OpenMP的线程和内在的SSE代码,并在以下链接讨论有关特殊情况的详细一般情况下,代码并行前缀累积总和,与-SSE

编辑:我设法找到一个SIMD版本第一遍大约是两倍的速度顺序代码。 现在,我得到的约7共刺激我的四个核心Ivy Bridge的系统上。

编辑:对于较大的阵列,一个问题是,在第一遍后最值已经从高速缓存中驱逐。 我想出了并行运行了一大块内,但连续运行的每个块的解决方案。 该chunk_size是应该调整的值。 例如,我将其设置为1MB = 256K浮动。 现在,当值仍然是2级高速缓存内的第二次完成。 这样做给出了大型阵列有了很大的改进。

这是上证所代码。 AVX的代码是差不多的速度,所以我没有张贴在这里。 它执行前缀和功能是scan_omp_SSEp2_SSEp1_chunk 。 传递给它的阵列a浮体和其填充阵列s带的累积和。

__m128 scan_SSE(__m128 x) {
    x = _mm_add_ps(x, _mm_castsi128_ps(_mm_slli_si128(_mm_castps_si128(x), 4))); 
    x = _mm_add_ps(x, _mm_shuffle_ps(_mm_setzero_ps(), x, 0x40)); 
    return x;
}

float pass1_SSE(float *a, float *s, const int n) {
    __m128 offset = _mm_setzero_ps();
    #pragma omp for schedule(static) nowait
    for (int i = 0; i < n / 4; i++) {
        __m128 x = _mm_load_ps(&a[4 * i]);
        __m128 out = scan_SSE(x);
        out = _mm_add_ps(out, offset);
        _mm_store_ps(&s[4 * i], out);
        offset = _mm_shuffle_ps(out, out, _MM_SHUFFLE(3, 3, 3, 3));
    }
    float tmp[4];
    _mm_store_ps(tmp, offset);
    return tmp[3];
}

void pass2_SSE(float *s, __m128 offset, const int n) {
    #pragma omp for schedule(static)
    for (int i = 0; i<n/4; i++) {
        __m128 tmp1 = _mm_load_ps(&s[4 * i]);
        tmp1 = _mm_add_ps(tmp1, offset);
        _mm_store_ps(&s[4 * i], tmp1);
    }
}

void scan_omp_SSEp2_SSEp1_chunk(float a[], float s[], int n) {
    float *suma;
    const int chunk_size = 1<<18;
    const int nchunks = n%chunk_size == 0 ? n / chunk_size : n / chunk_size + 1;
    //printf("nchunks %d\n", nchunks);
    #pragma omp parallel
    {
        const int ithread = omp_get_thread_num();
        const int nthreads = omp_get_num_threads();

        #pragma omp single
        {
            suma = new float[nthreads + 1];
            suma[0] = 0;
        }

        float offset2 = 0.0f;
        for (int c = 0; c < nchunks; c++) {
            const int start = c*chunk_size;
            const int chunk = (c + 1)*chunk_size < n ? chunk_size : n - c*chunk_size;
            suma[ithread + 1] = pass1_SSE(&a[start], &s[start], chunk);
            #pragma omp barrier
            #pragma omp single
            {
                float tmp = 0;
                for (int i = 0; i < (nthreads + 1); i++) {
                    tmp += suma[i];
                    suma[i] = tmp;
                }
            }
            __m128 offset = _mm_set1_ps(suma[ithread]+offset2);
            pass2_SSE(&s[start], offset, chunk);
            #pragma omp barrier
            offset2 = s[start + chunk-1];
        }
    }
    delete[] suma;
}


Answer 2:

您可以利用对于大的寄存器长度和小额一些小的并行性。 例如,相加1个字节的16个值(其发生在放入一个SSE寄存器)仅需要登录2种 16添加和相等数量的移位。
虽然不大,但速度比15取决于补充和附加存储器访问。

__m128i x = _mm_set_epi8(3,1,7,0,4,1,6,3,3,1,7,0,4,1,6,3);
x = _mm_add_epi8(x, _mm_srli_si128(x, 1));
x = _mm_add_epi8(x, _mm_srli_si128(x, 2));
x = _mm_add_epi8(x, _mm_srli_si128(x, 4));
x = _mm_add_epi8(x, _mm_srli_si128(x, 8));

// x == 3, 4, 11, 11, 15, 16, 22, 25, 28, 29, 36, 36, 40, 41, 47, 50

如果你有更长的资金,依赖可以通过开发指令级并行,并采取指令重新排序的优势被隐藏。

编辑:像

__m128i x0 = _mm_set_epi8(3,1,7,0,4,1,6,3,3,1,7,0,4,1,6,3);
__m128i x1 = _mm_set_epi8(3,1,7,0,4,1,6,3,3,1,7,0,4,1,6,3);
__m128i x2 = _mm_set_epi8(3,1,7,0,4,1,6,3,3,1,7,0,4,1,6,3);
__m128i x3 = _mm_set_epi8(3,1,7,0,4,1,6,3,3,1,7,0,4,1,6,3);

__m128i mask = _mm_set_epi8(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

x0 = _mm_add_epi8(x0, _mm_srli_si128(x0, 1));
x1 = _mm_add_epi8(x1, _mm_srli_si128(x1, 1));
x2 = _mm_add_epi8(x2, _mm_srli_si128(x2, 1));
x3 = _mm_add_epi8(x3, _mm_srli_si128(x3, 1));

x0 = _mm_add_epi8(x0, _mm_srli_si128(x0, 2));
x1 = _mm_add_epi8(x1, _mm_srli_si128(x1, 2));
x2 = _mm_add_epi8(x2, _mm_srli_si128(x2, 2));
x3 = _mm_add_epi8(x3, _mm_srli_si128(x3, 2));

x0 = _mm_add_epi8(x0, _mm_srli_si128(x0, 4));
x1 = _mm_add_epi8(x1, _mm_srli_si128(x1, 4));
x2 = _mm_add_epi8(x2, _mm_srli_si128(x2, 4));
x3 = _mm_add_epi8(x3, _mm_srli_si128(x3, 4));

x0 = _mm_add_epi8(x0, _mm_srli_si128(x0, 8));
x1 = _mm_add_epi8(x1, _mm_srli_si128(x1, 8));
x2 = _mm_add_epi8(x2, _mm_srli_si128(x2, 8));
x3 = _mm_add_epi8(x3, _mm_srli_si128(x3, 8));

x1 = _mm_add_epi8(_mm_shuffle_epi8(x0, mask), x1);
x2 = _mm_add_epi8(_mm_shuffle_epi8(x1, mask), x2);
x3 = _mm_add_epi8(_mm_shuffle_epi8(x2, mask), x3);


Answer 3:

前缀和可并行计算,它实际上是在GPU编程的基本算法之一。 如果您在使用英特尔处理器SIMD扩展我不知道,如果在平行这样做实际上将有利于你多,但看看本文来自NVIDIA上实现并行前缀总和(只看算法和忽视在CUDA): http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html



Answer 4:

对于1000个的32位整数数组,我能得到约1.4倍的单线程,使用@ hirschhornsalz的方法的小加速在英特尔的Sandy Bridge循环。 与整数的60kiB缓冲器,加速为约1.37。 随着整数的8MiB,增速仍然是1.13。 (i5-2500k在3.8GHz的涡轮,与DDR3-1600。)

较小的元素( int16_tuint8_t ,或无符号版本)将采取偏移的额外阶段/添加对每个矢量元素的数量每增加一倍。 溢出是坏的,所以不要尝试使用不能容纳所有元素的总和,尽管它给SSE更大的优势的数据类型。

#include <immintrin.h>

// In-place rewrite an array of values into an array of prefix sums.
// This makes the code simpler, and minimizes cache effects.
int prefix_sum_sse(int data[], int n)
{
//    const int elemsz = sizeof(data[0]);
#define elemsz sizeof(data[0])   // clang-3.5 doesn't allow compile-time-const int as an imm8 arg to intrinsics

    __m128i *datavec = (__m128i*)data;
    const int vec_elems = sizeof(*datavec)/elemsz;
    // to use this for int8/16_t, you still need to change the add_epi32, and the shuffle

    const __m128i *endp = (__m128i*) (data + n - 2*vec_elems);  // don't start an iteration beyond this
    __m128i carry = _mm_setzero_si128();
    for(; datavec <= endp ; datavec += 2) {
        IACA_START
        __m128i x0 = _mm_load_si128(datavec + 0);
        __m128i x1 = _mm_load_si128(datavec + 1); // unroll / pipeline by 1
//      __m128i x2 = _mm_load_si128(datavec + 2);
//      __m128i x3;

        x0 = _mm_add_epi32(x0, _mm_slli_si128(x0, elemsz));  // for floats, use shufps not bytewise-shift
        x1 = _mm_add_epi32(x1, _mm_slli_si128(x1, elemsz));

        x0 = _mm_add_epi32(x0, _mm_slli_si128(x0, 2*elemsz));
        x1 = _mm_add_epi32(x1, _mm_slli_si128(x1, 2*elemsz));

    // more shifting if vec_elems is larger

        x0 = _mm_add_epi32(x0, carry);  // this has to go after the byte-shifts, to avoid double-counting the carry.
        _mm_store_si128(datavec +0, x0); // store first to allow destructive shuffle (non-avx pshufb if needed)

        x1 = _mm_add_epi32(_mm_shuffle_epi32(x0, _MM_SHUFFLE(3,3,3,3)), x1);
        _mm_store_si128(datavec +1, x1);

        carry = _mm_shuffle_epi32(x1, _MM_SHUFFLE(3,3,3,3)); // broadcast the high element for next vector
    }
    // FIXME: scalar loop to handle the last few elements
    IACA_END
    return data[n-1];
    #undef elemsz
}

int prefix_sum_simple(int data[], int n)
{
    int sum=0;
    for (int i=0; i<n ; i++) {
        IACA_START
        sum += data[i];
        data[i] = sum;
    }
    IACA_END
    return sum;
}

// perl -we '$n=1000; sub rnlist($$) { return map { int rand($_[1]) } ( 1..$_[0] );}  @a=rnlist($n,127);   $"=", "; print "$n\n@a\n";'

int data[] = { 51, 83, 126, 11,   20, 63, 113, 102,
       126,67, 83, 113,   86, 123, 30, 109,
       97, 71, 109, 86,   67, 60,  47, 12,
       /* ... */ };


int main(int argc, char**argv)
{
    const int elemsz = sizeof(data[0]);
    const int n = sizeof(data)/elemsz;
    const long reps = 1000000 * 1000 / n;
    if (argc >= 2 && *argv[1] == 'n') {
        for (int i=0; i < reps ; i++)
            prefix_sum_simple(data, n);
    }else {
        for (int i=0; i < reps ; i++)
            prefix_sum_sse(data, n);
    }
    return 0;
}

测试与N = 1000,与列表编译成二进制文件。 (是的,我检查了它的实际循环,没有采取任何编译时的快捷方式,使载体或非向量测试毫无意义。)

请注意,AVX编译拿到3操作数非破坏性的向量指令可以节省大量的movdqa说明,但只保存周期的极少量。 这是因为洗牌和矢量INT-ADD既可以只在端口1和5上运行,对SNB / IVB,所以端口0有很多空闲周期运行MOV指令。 UOP缓存吞吐量瓶颈可能是为什么非AVX版本稍慢的原因。 (所有这些额外的MOV指令把我们推高达3.35的insn /循环)。 前端是唯一周期的闲置4.54%,所以它几乎没有跟上。

gcc -funroll-loops -DIACA_MARKS_OFF -g -std=c11 -Wall -march=native -O3 prefix-sum.c -mno-avx -o prefix-sum-noavx

  # gcc 4.9.2

################# SSE (non-AVX) vector version ############
$ ocperf.py stat -e task-clock,cycles,instructions,uops_issued.any,uops_dispatched.thread,uops_retired.all,uops_retired.retire_slots,stalled-cycles-frontend,stalled-cycles-backend ./prefix-sum-noavx 
perf stat -e task-clock,cycles,instructions,cpu/event=0xe,umask=0x1,name=uops_issued_any/,cpu/event=0xb1,umask=0x1,name=uops_dispatched_thread/,cpu/event=0xc2,umask=0x1,name=uops_retired_all/,cpu/event=0xc2,umask=0x2,name=uops_retired_retire_slots/,stalled-cycles-frontend,stalled-cycles-backend ./prefix-sum-noavx

 Performance counter stats for './prefix-sum-noavx':

        206.986720      task-clock (msec)         #    0.999 CPUs utilized          
       777,473,726      cycles                    #    3.756 GHz                    
     2,604,757,487      instructions              #    3.35  insns per cycle        
                                                  #    0.01  stalled cycles per insn
     2,579,310,493      uops_issued_any           # 12461.237 M/sec
     2,828,479,147      uops_dispatched_thread    # 13665.027 M/sec
     2,829,198,313      uops_retired_all          # 13668.502 M/sec (unfused domain)
     2,579,016,838      uops_retired_retire_slots # 12459.818 M/sec (fused domain)
        35,298,807      stalled-cycles-frontend   #    4.54% frontend cycles idle   
         1,224,399      stalled-cycles-backend    #    0.16% backend  cycles idle   

       0.207234316 seconds time elapsed
------------------------------------------------------------


######### AVX (same source, but built with -mavx).  not AVX2 #########
$ ocperf.py stat -e task-clock,cycles,instructions,uops_issued.any,uops_dispatched.thread,uops_retired.all,uops_retired.retire_slots,stalled-cycles-frontend,stalled-cycles-backend ./prefix-sum-avx

 Performance counter stats for './prefix-sum-avx':

        203.429021      task-clock (msec)         #    0.999 CPUs utilized          
       764,859,441      cycles                    #    3.760 GHz                    
     2,079,716,097      instructions              #    2.72  insns per cycle        
                                                  #    0.12  stalled cycles per insn
     2,054,334,040      uops_issued_any           # 10098.530 M/sec                  
     2,303,378,797      uops_dispatched_thread    # 11322.764 M/sec                  
     2,304,140,578      uops_retired_all          # 11326.509 M/sec                  
     2,053,968,862      uops_retired_retire_slots # 10096.735 M/sec                  
       240,883,566      stalled-cycles-frontend   #   31.49% frontend cycles idle   
         1,224,637      stalled-cycles-backend    #    0.16% backend  cycles idle   

       0.203732797 seconds time elapsed
------------------------------------------------------------


################## scalar version (cmdline arg) #############    
$ ocperf.py stat -e task-clock,cycles,instructions,uops_issued.any,uops_dispatched.thread,uops_retired.all,uops_retired.retire_slots,stalled-cycles-frontend,stalled-cycles-backend ./prefix-sum-avx n

 Performance counter stats for './prefix-sum-avx n':

        287.567070      task-clock (msec)         #    0.999 CPUs utilized          
     1,082,611,453      cycles                    #    3.765 GHz                    
     2,381,840,355      instructions              #    2.20  insns per cycle        
                                                  #    0.20  stalled cycles per insn
     2,272,652,370      uops_issued_any           # 7903.034 M/sec                  
     4,262,838,836      uops_dispatched_thread    # 14823.807 M/sec                  
     4,256,351,856      uops_retired_all          # 14801.249 M/sec                  
     2,256,150,510      uops_retired_retire_slots # 7845.650 M/sec                  
       465,018,146      stalled-cycles-frontend   #   42.95% frontend cycles idle   
         6,321,098      stalled-cycles-backend    #    0.58% backend  cycles idle   

       0.287901811 seconds time elapsed

------------------------------------------------------------    

Haswell的应该是差不多的,但每个时钟也许稍微慢一些,因为洗牌只能在端口5上运行,而不是端口1(矢量-INT附加还在进行的Haswell P1 / 5)。

OTOH,IACA认为的Haswell将略快于SNB一个迭代,如果你没有编译-funroll-loops (这确实有助于对SNB)。 Haswell的可以做PORT6分支,但瑞士央行分行都在PORT5,我们已经饱和。

 # compile without -DIACA_MARKS_OFF
$ iaca -64 -mark 1 -arch HSW prefix-sum-avx    
Intel(R) Architecture Code Analyzer Version - 2.1
Analyzed File - prefix-sum-avx
Binary Format - 64Bit
Architecture  - HSW
Analysis Type - Throughput

*******************************************************************
Intel(R) Architecture Code Analyzer Mark Number 1
*******************************************************************

Throughput Analysis Report
--------------------------
Block Throughput: 6.20 Cycles       Throughput Bottleneck: Port5

Port Binding In Cycles Per Iteration:
---------------------------------------------------------------------------------------
|  Port  |  0   -  DV  |  1   |  2   -  D   |  3   -  D   |  4   |  5   |  6   |  7   |
---------------------------------------------------------------------------------------
| Cycles | 1.0    0.0  | 5.8  | 1.4    1.0  | 1.4    1.0  | 2.0  | 6.2  | 1.0  | 1.3  |
---------------------------------------------------------------------------------------

N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred
* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis

| Num Of |                    Ports pressure in cycles                     |    |
|  Uops  |  0  - DV  |  1  |  2  -  D  |  3  -  D  |  4  |  5  |  6  |  7  |    |
---------------------------------------------------------------------------------
|   1    |           |     | 1.0   1.0 |           |     |     |     |     |    | vmovdqa xmm2, xmmword ptr [rax]
|   1    | 1.0       |     |           |           |     |     |     |     |    | add rax, 0x20
|   1    |           |     |           | 1.0   1.0 |     |     |     |     |    | vmovdqa xmm3, xmmword ptr [rax-0x10]
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpslldq xmm1, xmm2, 0x4
|   1    |           | 1.0 |           |           |     |     |     |     |    | vpaddd xmm2, xmm2, xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpslldq xmm1, xmm3, 0x4
|   1    |           | 1.0 |           |           |     |     |     |     |    | vpaddd xmm3, xmm3, xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpslldq xmm1, xmm2, 0x8
|   1    |           | 1.0 |           |           |     |     |     |     |    | vpaddd xmm2, xmm2, xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpslldq xmm1, xmm3, 0x8
|   1    |           | 1.0 |           |           |     |     |     |     |    | vpaddd xmm3, xmm3, xmm1
|   1    |           | 0.9 |           |           |     | 0.2 |     |     | CP | vpaddd xmm1, xmm2, xmm0
|   2^   |           |     |           |           | 1.0 |     |     | 1.0 |    | vmovaps xmmword ptr [rax-0x20], xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpshufd xmm1, xmm1, 0xff
|   1    |           | 0.9 |           |           |     | 0.1 |     |     | CP | vpaddd xmm0, xmm1, xmm3
|   2^   |           |     | 0.3       | 0.3       | 1.0 |     |     | 0.3 |    | vmovaps xmmword ptr [rax-0x10], xmm0
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpshufd xmm0, xmm0, 0xff
|   1    |           |     |           |           |     |     | 1.0 |     |    | cmp rax, 0x602020
|   0F   |           |     |           |           |     |     |     |     |    | jnz 0xffffffffffffffa3
Total Num Of Uops: 20

顺便说一句,GCC编译循环中使用,即使我有一个循环计数器的一寄存器寻址模式和在做load(datavec + i + 1) 这是最好的代码,ESP。 上SNB-家族,其中2-寄存器寻址模式不能微型保险丝,所以改变源为铛的益处,即循环的状态。



文章来源: SIMD prefix sum on Intel cpu
标签: c++ sse simd mmx