我怎么能以改善例如下面的代码(矢量的总和)的性能使用两个设备? 是否有可能使用更多的设备“在同一时间”? 如果是的话,我怎么能管理载体的分配在不同的设备的全局内存?
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <cuda.h>
#define NB 32
#define NT 500
#define N NB*NT
__global__ void add( double *a, double *b, double *c);
//===========================================
__global__ void add( double *a, double *b, double *c){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
while(tid < N){
c[tid] = a[tid] + b[tid];
tid += blockDim.x * gridDim.x;
}
}
//============================================
//BEGIN
//===========================================
int main( void ) {
double *a, *b, *c;
double *dev_a, *dev_b, *dev_c;
// allocate the memory on the CPU
a=(double *)malloc(N*sizeof(double));
b=(double *)malloc(N*sizeof(double));
c=(double *)malloc(N*sizeof(double));
// allocate the memory on the GPU
cudaMalloc( (void**)&dev_a, N * sizeof(double) );
cudaMalloc( (void**)&dev_b, N * sizeof(double) );
cudaMalloc( (void**)&dev_c, N * sizeof(double) );
// fill the arrays 'a' and 'b' on the CPU
for (int i=0; i<N; i++) {
a[i] = (double)i;
b[i] = (double)i*2;
}
// copy the arrays 'a' and 'b' to the GPU
cudaMemcpy( dev_a, a, N * sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy( dev_b, b, N * sizeof(double), cudaMemcpyHostToDevice);
for(int i=0;i<10000;++i)
add<<<NB,NT>>>( dev_a, dev_b, dev_c );
// copy the array 'c' back from the GPU to the CPU
cudaMemcpy( c, dev_c, N * sizeof(double), cudaMemcpyDeviceToHost);
// display the results
// for (int i=0; i<N; i++) {
// printf( "%g + %g = %g\n", a[i], b[i], c[i] );
// }
printf("\nGPU done\n");
// free the memory allocated on the GPU
cudaFree( dev_a );
cudaFree( dev_b );
cudaFree( dev_c );
// free the memory allocated on the CPU
free( a );
free( b );
free( c );
return 0;
}
先感谢您。 米歇尔