我使用的Spark 2.2,并试图打电话的时候,我遇到了麻烦spark.createDataset
对Seq
的Map
。
代码和输出从我的星火壳牌会话如下:
// createDataSet on Seq[T] where T = Int works
scala> spark.createDataset(Seq(1, 2, 3)).collect
res0: Array[Int] = Array(1, 2, 3)
scala> spark.createDataset(Seq(Map(1 -> 2))).collect
<console>:24: error: Unable to find encoder for type stored in a Dataset.
Primitive types (Int, String, etc) and Product types (case classes) are
supported by importing spark.implicits._
Support for serializing other types will be added in future releases.
spark.createDataset(Seq(Map(1 -> 2))).collect
^
// createDataSet on a custom case class containing Map works
scala> case class MapHolder(m: Map[Int, Int])
defined class MapHolder
scala> spark.createDataset(Seq(MapHolder(Map(1 -> 2)))).collect
res2: Array[MapHolder] = Array(MapHolder(Map(1 -> 2)))
我已经试过import spark.implicits._
,虽然我相当肯定,含蓄真实由星火shell会话进口。
这是没有覆盖当前的编码器的情况下?
这是不包括在2.2,但可以很容易地解决。 您可以添加所需的Encoder
使用ExpressionEncoder
,无论是明确:
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
spark
.createDataset(Seq(Map(1 -> 2)))(ExpressionEncoder(): Encoder[Map[Int, Int]])
或implicitly
:
implicit def mapIntIntEncoder: Encoder[Map[Int, Int]] = ExpressionEncoder()
spark.createDataset(Seq(Map(1 -> 2)))
仅供参考,上述表达只是工作在星火2.3(截至本承诺 ,如果我没有记错)。
scala> spark.version
res0: String = 2.3.0
scala> spark.createDataset(Seq(Map(1 -> 2))).collect
res1: Array[scala.collection.immutable.Map[Int,Int]] = Array(Map(1 -> 2))
我想这是因为newMapEncoder
现在的一部分spark.implicits
。
scala> :implicits
...
implicit def newMapEncoder[T <: scala.collection.Map[_, _]](implicit evidence$3: reflect.runtime.universe.TypeTag[T]): org.apache.spark.sql.Encoder[T]
通过下面的技巧你可以“禁用”隐,并给予上述表达式一试(这将导致一个错误)。
trait ThatWasABadIdea
implicit def newMapEncoder(ack: ThatWasABadIdea) = ack
scala> spark.createDataset(Seq(Map(1 -> 2))).collect
<console>:26: error: Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._ Support for serializing other types will be added in future releases.
spark.createDataset(Seq(Map(1 -> 2))).collect
^