如何累积在R中一个矢量值添加如何累积在R中一个矢量值添加(how to cumulatively a

2019-05-12 03:13发布

我有一个数据集,看起来像这样

id  name    year    job    job2
1   Jane    1980    Worker  0
1   Jane    1981    Manager 1
1   Jane    1982    Manager 1
1   Jane    1983    Manager 1
1   Jane    1984    Manager 1
1   Jane    1985    Manager 1
1   Jane    1986    Boss    0
1   Jane    1987    Boss    0
2   Bob     1985    Worker  0
2   Bob     1986    Worker  0
2   Bob     1987    Manager 1
2   Bob     1988    Boss    0
2   Bob     1989    Boss    0
2   Bob     1990    Boss    0
2   Bob     1991    Boss    0
2   Bob     1992    Boss    0

在这里, job2表示哑变量,表示某人是否是一个Manager在该年度或没有。 我想要做的两件事情,以这组数据:第一,我只希望保留该行当人成为Boss的第一次。 第二,我想看看累计岁的人担任Manager ,并存储在变量此信息cumu_job2 。 因此,我想有:

id  name    year    job    job2 cumu_job2
1   Jane    1980    Worker  0   0
1   Jane    1981    Manager 1   1
1   Jane    1982    Manager 1   2
1   Jane    1983    Manager 1   3
1   Jane    1984    Manager 1   4
1   Jane    1985    Manager 1   5
1   Jane    1986    Boss    0   0
2   Bob     1985    Worker  0   0
2   Bob     1986    Worker  0   0
2   Bob     1987    Manager 1   1
2   Bob     1988    Boss    0   0

我已经改变了我的例子,包括人位置,因为这反映了更多的什么,我想用原始数据集做。 所以使这项工作将是巨大的任何建议 - 在这个线程的答案只有当只有经理和老板在数据集中工作。 我会很感激得多!

Answer 1:

这里是简洁dplyr对同一问题的解决方案。

注:确保stringsAsFactors = FALSE而在数据读取。

library(dplyr)
dat %>%
  group_by(name, job) %>%
  filter(job != "Boss" | year == min(year)) %>%
  mutate(cumu_job2 = cumsum(job2))

输出:

   id name year     job job2 cumu_job2
1   1 Jane 1980  Worker    0         0
2   1 Jane 1981 Manager    1         1
3   1 Jane 1982 Manager    1         2
4   1 Jane 1983 Manager    1         3
5   1 Jane 1984 Manager    1         4
6   1 Jane 1985 Manager    1         5
7   1 Jane 1986    Boss    0         0
8   2  Bob 1985  Worker    0         0
9   2  Bob 1986  Worker    0         0
10  2  Bob 1987 Manager    1         1
11  2  Bob 1988    Boss    0         0

说明

  1. 就拿数据集
  2. 集团的名字和职务
  3. 筛选基于条件各组
  4. 添加cumu_job2列。


Answer 2:

供稿人:马修Dowle:

dt[, .SD[job != "Boss" | year == min(year)][, cumjob := cumsum(job2)],
     by = list(name, job)]

说明

  1. 就拿数据集
  2. 运行一个过滤器和d ATA的各S-ubset内添加一列( .SD
  3. 按名称和工作分组

旧版本:

你有两个不同的分割申请在这里结合。 一个获得累计的工作,和对方取得的老大地位的第一行。 这里是一个实现data.table ,我们基本上做单独分析每一个(好,那种),然后在一个地方与收集一切rbind 。 需要注意的主要事情是by=id件,这基本上意味着其他表达式为每个评估id中的数据,这是你正确地指出您尝试丢失的分组。

library(data.table)
dt <- as.data.table(df)
dt[, cumujob:=0L]  # add column, set to zero
dt[job2==1, cumujob:=cumsum(job2), by=id]  # cumsum for manager time by person 
rbind(
  dt[job2==1],                     # this is just the manager portion of the data
  dt[job2==0, head(.SD, 1), by=id] # get first bossdom row
)[order(id, year)]                 # order by id, year
#       id name year     job job2 cumujob
#   1:  1 Jane 1980 Manager    1       1
#   2:  1 Jane 1981 Manager    1       2
#   3:  1 Jane 1982 Manager    1       3
#   4:  1 Jane 1983 Manager    1       4
#   5:  1 Jane 1984 Manager    1       5
#   6:  1 Jane 1985 Manager    1       6
#   7:  1 Jane 1986    Boss    0       0
#   8:  2  Bob 1985 Manager    1       1
#   9:  2  Bob 1986 Manager    1       2
#  10:  2  Bob 1987 Manager    1       3
#  11:  2  Bob 1988    Boss    0       0

请注意,此假设表由一年内每一个分类id ,但如果它不是那么是很容易解决。


另外,您也可以实现与相同:

ans <- dt[, .I[job != "Boss" | year == min(year)], by=list(name, job)]
ans <- dt[ans$V1]
ans[, cumujob := cumsum(job2), by=list(name,job)] 

我们的想法是基本上得到了行号在条件满足(与.I -内部变量),然后子集dt这些行号(在$v1的一部分),那么就进行累计总和。



Answer 3:

这里是使用碱溶液withinave 。 我们假设输入是DF和数据被分拣为的问题。

DF2 <- within(DF, {
    seq = ave(id, id, job, FUN = seq_along)
    job2 = (job == "Manager") + 0
    cumu_job2 = ave(job2, id, job, FUN = cumsum)
})
subset(DF2, job != 'Boss' | seq == 1, select = - seq)

修订:现在使用within



Answer 4:

我想这是你想要什么,虽然你已经提出了它的数据必须进行排序。

my.df <- read.table(text = '
id  name    year    job    job2
1   Jane    1980    Worker  0
1   Jane    1981    Manager 1
1   Jane    1982    Manager 1
1   Jane    1983    Manager 1
1   Jane    1984    Manager 1
1   Jane    1985    Manager 1
1   Jane    1986    Boss    0
1   Jane    1987    Boss    0
2   Bob     1985    Worker  0
2   Bob     1986    Worker  0
2   Bob     1987    Manager 1
2   Bob     1988    Boss    0
2   Bob     1989    Boss    0
2   Bob     1990    Boss    0
2   Bob     1991    Boss    0
2   Bob     1992    Boss    0
', header = TRUE, stringsAsFactors = FALSE)

my.seq <- data.frame(rle(my.df$job)$lengths)

my.df$cumu_job2 <- as.vector(unlist(apply(my.seq, 1, function(x) seq(1,x))))

my.df2 <- my.df[!(my.df$job=='Boss' & my.df$cumu_job2 != 1),]
my.df2$cumu_job2[my.df2$job != 'Manager'] <- 0

   id name year     job job2 cumu_job2
1   1 Jane 1980  Worker    0         0
2   1 Jane 1981 Manager    1         1
3   1 Jane 1982 Manager    1         2
4   1 Jane 1983 Manager    1         3
5   1 Jane 1984 Manager    1         4
6   1 Jane 1985 Manager    1         5
7   1 Jane 1986    Boss    0         0
9   2  Bob 1985  Worker    0         0
10  2  Bob 1986  Worker    0         0
11  2  Bob 1987 Manager    1         1
12  2  Bob 1988    Boss    0         0


Answer 5:

@ BrodieG的是更好的方式:

数据

dat <- read.table(text="id  name    year    job    job2
1   Jane    1980    Manager 1
1   Jane    1981    Manager 1
1   Jane    1982    Manager 1
1   Jane    1983    Manager 1
1   Jane    1984    Manager 1
1   Jane    1985    Manager 1
1   Jane    1986    Boss    0
1   Jane    1987    Boss    0
2   Bob     1985    Manager 1
2   Bob     1986    Manager 1
2   Bob     1987    Manager 1
2   Bob     1988    Boss    0
2   Bob     1989    Boss    0
2   Bob     1990    Boss    0
2   Bob     1991    Boss    0
2   Bob     1992    Boss    0", header=TRUE)

#代码:

inds1 <- rle(dat$job2)
inds2 <- cumsum(inds1[[1]])[inds1[[2]] == 1] + 1

ends <- cumsum(inds1[[1]])
starts <- c(1, head(ends + 1, -1))
inds3 <- mapply(":", starts, ends)
dat$id <- rep(1:length(inds3), sapply(inds3, length))
dat <- do.call(rbind, lapply(split(dat[, 1:5], dat$id ), function(x) {
    if(x$job2[1] == 0){ 
        x$cumu_job2 <- rep(0, nrow(x))
    } else { 
        x$cumu_job2 <- 1:nrow(x)
    }
    x
}))


keeps <- dat$job2 > 0
keeps[inds2] <- TRUE
dat2 <- data.frame(dat[keeps, ], row.names = NULL)
dat2

##    id name year     job job2 cumu_job2
## 1   1 Jane 1980 Manager    1         1
## 2   1 Jane 1981 Manager    1         2
## 3   1 Jane 1982 Manager    1         3
## 4   1 Jane 1983 Manager    1         4
## 5   1 Jane 1984 Manager    1         5
## 6   1 Jane 1985 Manager    1         6
## 7   2 Jane 1986    Boss    0         0
## 8   3  Bob 1985 Manager    1         1
## 9   3  Bob 1986 Manager    1         2
## 10  3  Bob 1987 Manager    1         3
## 11  4  Bob 1988    Boss    0         0


文章来源: how to cumulatively add values in one vector in R