I am not really good with pandas, and I think pandas should solve my problem:
I have a text file, that contains data (id1
;id2
;value1
;value2
;value3
)
1;2;30;40;20.3;
1;2;30;42;26.2;
3;5;12;55;10.7;
3;5;12;23;8.7;
3;5;12;33;11.2;
24;12;1;553;1.1;
24;12;1;23;1.9;
As a result, I want to keep lines, that have equal id1
, id2
, value1
, and higher value3
. Value2
is not important, but it needs to be kept, e.g.
1;2;30;42;26.2;
3;5;12;33;11.2;
24;12;1;23;1.9;
You need DataFrameGroupBy.idxmax
for indexes of max value of value3
and thes select DataFrame
by loc
:
print (df.groupby(['id1','id2','value1']).value3.idxmax())
id1 id2 value1
1 2 30 1
3 5 12 4
24 12 1 6
Name: value3, dtype: int64
df = df.loc[df.groupby(['id1','id2','value1']).value3.idxmax()]
print (df)
id1 id2 value1 value2 value3 a
1 1 2 30 42 26.2 NaN
4 3 5 12 33 11.2 NaN
6 24 12 1 23 1.9 NaN
Another possible solution is sort_values
by column value3
and then groupby
with GroupBy.first
:
df = df.sort_values('value3', ascending=False)
.groupby(['id1','id2','value1'], sort=False)
.first()
.reset_index()
print (df)
id1 id2 value1 value2 value3 a
0 1 2 30 42 26.2 NaN
1 3 5 12 33 11.2 NaN
2 24 12 1 23 1.9 NaN