I have two numpy arrays:
x of shape ((d1,...,d_m))
y of shape ((e_1,...e_n))
I would like to form the outer tensor product, that is the numpy array
z of shape ((d1,...,d_m,e_1,...,e_n))
such that
z[i_1,...,i_n,i_{n+1}...,i_{m+n}] == x[i_1,...i_m]*y[i_{m+1},...,i_{m+n}]
I have to perform the above outer multiplication several times so I would like to speed this up as much as possible.
An alternative to outer
is to explicitly expand the dimensions. For 1d arrays this would be
x[:,None]*y # y[None,:] is automatic.
For 10x10 arrays, and generalizing the dimension expansion, I get the same times
In [74]: timeit x[[slice(None)]*x.ndim + [None]*y.ndim] * y
10000 loops, best of 3: 53.6 µs per loop
In [75]: timeit np.multiply.outer(x,y)
10000 loops, best of 3: 52.6 µs per loop
So outer
does save some coding, but the basic broadcasted multiplication is the same.
You want np.multiply.outer
:
z = np.multiply.outer(x, y)