I am trying to generate a number of series of double random numbers with high precision. For example, 0.856365621 (has 9 digits after decimal).
I've found some methods from internet, however, they do generate double random number, but the precision is not as good as I request (only 6 digits after the decimal).
Thus, may I know how to achieve my goal?
In C++11 you can using the <random>
header and in this specific example using std::uniform_real_distribution
I am able to generate random numbers with more than 6
digits. In order to see set the number of digits that will be printed via std::cout
we need to use std::setprecision
:
#include <iostream>
#include <random>
#include <iomanip>
int main()
{
std::random_device rd;
std::mt19937 e2(rd());
std::uniform_real_distribution<> dist(1, 10);
for( int i = 0 ; i < 10; ++i )
{
std::cout << std::fixed << std::setprecision(10) << dist(e2) << std::endl ;
}
return 0 ;
}
you can use std::numeric_limits::digits10
to determine the precision available.
std::cout << std::numeric_limits<double>::digits10 << std::endl;
In a typical system, RAND_MAX is 231-1 or something similar to that. So your "precision" from using a method like:L
double r = rand()/RAND_MAX;
would be 1/(2<sup>31</sup)-1
- this should give you 8-9 digits "precision" in the random number. Make sure you print with high enough precision:
cout << r << endl;
will not do. This will work better:
cout << fixed << sprecision(15) << r << endl;
Of course, there are some systems out there with much smaller RAND_MAX, in which case the results may be less "precise" - however, you should still get digits down in the 9-12 range, just that they are more likely to be "samey".
Why not create your value out of multiple calls of the random function instead?
For instance:
const int numDecimals = 9;
double result = 0.0;
double div = 1.0;
double mul = 1.0;
for (int n = 0; n < numDecimals; ++n)
{
int t = rand() % 10;
result += t * mul;
mul *= 10.0;
div /= 10.0;
}
result = result * div;
I would personally try a new implementation of the rand function though or at least multiply with the current time or something..