As a simplified example, suppose I have a dataset composed of 40 sorted values. The values of this example are all integers, though this is not necessarily the case for the actual dataset.
import numpy as np
data = np.linspace(1,40,40)
I am trying to find the maximum value inside the dataset for certain window sizes. The formula to compute the window sizes yields a pattern that is best executed with arrays (in my opinion). For simplicity sake, let's say the indices denoting the window sizes are a list [1,2,3,4,5]
; this corresponds to window sizes of [2,4,8,16,32]
(the pattern is 2**index
).
## this code looks long because I've provided docstrings
## just in case the explanation was unclear
def shapeshifter(num_col, my_array=data):
"""
This function reshapes an array to have 'num_col' columns, where
'num_col' corresponds to index.
"""
return my_array.reshape(-1, num_col)
def looper(num_col, my_array=data):
"""
This function calls 'shapeshifter' and returns a list of the
MAXimum values of each row in 'my_array' for 'num_col' columns.
The length of each row (or the number of columns per row if you
prefer) denotes the size of each window.
EX:
num_col = 2
==> window_size = 2
==> check max( data[1], data[2] ),
max( data[3], data[4] ),
max( data[5], data[6] ),
.
.
.
max( data[39], data[40] )
for k rows, where k = len(my_array)//num_col
"""
my_array = shapeshifter(num_col=num_col, my_array=data)
rows = [my_array[index] for index in range(len(my_array))]
res = []
for index in range(len(rows)):
res.append( max(rows[index]) )
return res
So far, the code is fine. I checked it with the following:
check1 = looper(2)
check2 = looper(4)
print(check1)
>> [2.0, 4.0, ..., 38.0, 40.0]
print(len(check1))
>> 20
print(check2)
>> [4.0, 8.0, ..., 36.0, 40.0]
print(len(check2))
>> 10
So far so good. Now here is my problem.
def metalooper(col_ls, my_array=data):
"""
This function calls 'looper' - which calls
'shapeshifter' - for every 'col' in 'col_ls'.
EX:
j_list = [1,2,3,4,5]
==> col_ls = [2,4,8,16,32]
==> looper(2), looper(4),
looper(8), ..., looper(32)
==> shapeshifter(2), shapeshifter(4),
shapeshifter(8), ..., shapeshifter(32)
such that looper(2^j) ==> shapeshifter(2^j)
for j in j_list
"""
res = []
for col in col_ls:
res.append(looper(num_col=col))
return res
j_list = [2,4,8,16,32]
check3 = metalooper(j_list)
Running the code above provides this error:
ValueError: total size of new array must be unchanged
With 40 data points
, the array can be reshaped into 2 columns
of 20 rows
, or 4 columns
of 10 rows
, or 8 columns
of 5 rows
, BUT at 16 columns
, the array cannot be reshaped without clipping data since 40/16 ≠ integer
. I believe this is the problem with my code, but I do not know how to fix it.
I am hoping there is a way to cutoff the last values in each row that do not fit in each window. If this is not possible, I am hoping I can append zeroes to fill the entries that maintain the size of the original array, so that I can remove the zeroes after. Or maybe even some complicated if
- try
- break
block. What are some ways around this problem?