I have a dataset where I want to remove the occurences of month 11 in the first observation year for a couple of my individuals. Is it possible to do this with ifelse? Something like:
ifelse(ID=="1" & Month=="11" and Year=="2006", "remove these rows",
ifelse(ID=="2" & Month=="11" & Year=="2007", "remove these rows",
"nothing"))
As always, all help appreciated! :)
You don't even need the ifelse()
if all you want is an indicator of which to remove or not.
ind <- (Month == "11") &
((ID == "1" & Year == "2006") | (ID == "2" & Year == "2007"))
ind
will contain a TRUE if Month
is "11"
and if either of the other two subclauses is TRUE
.
Then you can drop those sample using !ind
in any subset operation via [
or subset()
.
dat <- data.frame(ID = rep(c("1","2"), each = 72),
Year = rep(c("2006","2007","2008"), each = 24),
Month = rep(as.character(1:12), times = 3))
ind <- with(dat, (Month == "11") & ((ID == "1" & Year == "2006") |
(ID == "2" & Year == "2007")))
ind
dat2 <- dat[!ind, ]
Which gives
R> ind
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
R> dat2 <- dat[!ind, ]
R> nrow(dat)
[1] 144
R> nrow(dat2)
[1] 140
which is correct in terms of the example data/
A data.table
solution, which will be time and memory efficient (and slightly less coding). It will scale well for big data sets.
If the columns were integer, not factor
library(data.table)
DT <- data.table(ID = rep(1:2, each = 72),
Year = rep(2006:2008, each = 24),
Month = rep(1:12, times = 3))
# or you could use: DT <- as.data.table(dat)
setkey(DT,ID,Year,Month)
DT[-DT[J(1:2,2006:2007,11),which=TRUE]]