比较两个data.frames找到data.frame 1不存在于data.frame 2行比较两个

2019-05-10 15:03发布

我有以下2个data.frames:

a1 <- data.frame(a = 1:5, b=letters[1:5])
a2 <- data.frame(a = 1:3, b=letters[1:3])

我想找到的行A1具有A2没有。

是否有一个内置的功能为这种类型的操作?

(PS:我没有为它编写一个解决方案,我只是好奇,如果有人已经取得了较为制作的代码)

这里是我的解决方案:

a1 <- data.frame(a = 1:5, b=letters[1:5])
a2 <- data.frame(a = 1:3, b=letters[1:3])

rows.in.a1.that.are.not.in.a2  <- function(a1,a2)
{
    a1.vec <- apply(a1, 1, paste, collapse = "")
    a2.vec <- apply(a2, 1, paste, collapse = "")
    a1.without.a2.rows <- a1[!a1.vec %in% a2.vec,]
    return(a1.without.a2.rows)
}
rows.in.a1.that.are.not.in.a2(a1,a2)

Answer 1:

这并不直接回答你的问题,但它会给你,是常用的元素。 这与保罗的Murrell的包进行compare

library(compare)
a1 <- data.frame(a = 1:5, b = letters[1:5])
a2 <- data.frame(a = 1:3, b = letters[1:3])
comparison <- compare(a1,a2,allowAll=TRUE)
comparison$tM
#  a b
#1 1 a
#2 2 b
#3 3 c

功能compare为您提供了很大的灵活性什么样的比较是允许条件(切换顺序每个向量的元素,和变量名,缩短变量如切换顺序,换弦的情况下)。 由此看来,你应该能够找出从一个或其他失踪。 例如(这是不是很优雅):

difference <-
   data.frame(lapply(1:ncol(a1),function(i)setdiff(a1[,i],comparison$tM[,i])))
colnames(difference) <- colnames(a1)
difference
#  a b
#1 4 d
#2 5 e


Answer 2:

SQLDF提供了一个很好的解决方案

a1 <- data.frame(a = 1:5, b=letters[1:5])
a2 <- data.frame(a = 1:3, b=letters[1:3])

require(sqldf)

a1NotIna2 <- sqldf('SELECT * FROM a1 EXCEPT SELECT * FROM a2')

并在两种数据帧的行:

a1Ina2 <- sqldf('SELECT * FROM a1 INTERSECT SELECT * FROM a2')

新版本的dplyr具有的功能, anti_join ,恰好为这些类型的比较

require(dplyr) 
anti_join(a1,a2)

semi_join来过滤行a1 ,同时也是在a2

semi_join(a1,a2)


Answer 3:

dplyr:

setdiff(a1,a2)

基本上, setdiff(bigFrame, smallFrame)让你在第一个表中的额外记录。

在SQLverse这就是所谓的

对于所有的好说明加入的选项和设置科目,这是我见过放在一起迄今为止最好的总结之一: http://www.vertabelo.com/blog/technical-articles/sql-joins

但是,回到这个问题-这里有结果了setdiff()使用OP的数据时的代码:

> a1
  a b
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e

> a2
  a b
1 1 a
2 2 b
3 3 c

> setdiff(a1,a2)
  a b
1 4 d
2 5 e

甚至anti_join(a1,a2)会得到相同的结果。
欲了解更多信息: https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf



Answer 4:

这肯定不是效率为这个特定的目的,但我经常做在这些情况下是插入每个data.frame指标变量,然后合并:

a1$included_a1 <- TRUE
a2$included_a2 <- TRUE
res <- merge(a1, a2, all=TRUE)

在included_a1缺失值会注意到这行的A1失踪。 同样,对于A2。

与您的解决方案的一个问题是,列订单必须匹配。 另一个问题是,它很容易想象那里的时候,其实是不同的行被编码为相同的情况。 利用合并的好处是,你可以免费获得所有的错误检查是必要的一个好办法。



Answer 5:

我写了一个包( https://github.com/alexsanjoseph/compareDF ),因为我有同样的问题。

  > df1 <- data.frame(a = 1:5, b=letters[1:5], row = 1:5)
  > df2 <- data.frame(a = 1:3, b=letters[1:3], row = 1:3)
  > df_compare = compare_df(df1, df2, "row")

  > df_compare$comparison_df
    row chng_type a b
  1   4         + 4 d
  2   5         + 5 e

一个更复杂的例子:

library(compareDF)
df1 = data.frame(id1 = c("Mazda RX4", "Mazda RX4 Wag", "Datsun 710",
                         "Hornet 4 Drive", "Duster 360", "Merc 240D"),
                 id2 = c("Maz", "Maz", "Dat", "Hor", "Dus", "Mer"),
                 hp = c(110, 110, 181, 110, 245, 62),
                 cyl = c(6, 6, 4, 6, 8, 4),
                 qsec = c(16.46, 17.02, 33.00, 19.44, 15.84, 20.00))

df2 = data.frame(id1 = c("Mazda RX4", "Mazda RX4 Wag", "Datsun 710",
                         "Hornet 4 Drive", " Hornet Sportabout", "Valiant"),
                 id2 = c("Maz", "Maz", "Dat", "Hor", "Dus", "Val"),
                 hp = c(110, 110, 93, 110, 175, 105),
                 cyl = c(6, 6, 4, 6, 8, 6),
                 qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22))

> df_compare$comparison_df
    grp chng_type                id1 id2  hp cyl  qsec
  1   1         -  Hornet Sportabout Dus 175   8 17.02
  2   2         +         Datsun 710 Dat 181   4 33.00
  3   2         -         Datsun 710 Dat  93   4 18.61
  4   3         +         Duster 360 Dus 245   8 15.84
  5   7         +          Merc 240D Mer  62   4 20.00
  6   8         -            Valiant Val 105   6 20.22

该软件包还具有快速检查的html_output命令

df_compare $ html_output



Answer 6:

您可以使用daff包装 (包装了daff.js库使用V8包 ):

library(daff)

diff_data(data_ref = a2,
          data = a1)

产生以下差异对象:

Daff Comparison: ‘a2’ vs. ‘a1’ 
  First 6 and last 6 patch lines:
   @@   a   b
1 ... ... ...
2       3   c
3 +++   4   d
4 +++   5   e
5 ... ... ...
6 ... ... ...
7       3   c
8 +++   4   d
9 +++   5   e

的差异格式中描述Coopy荧光笔差异格式为表和应该是不言自明。 与线+++在第一列@@是它们是在新的那些a1和在不存在a2

差对象可以用来patch_data()用来存储以作记录的差write_diff()使用可视化的差render_diff()

render_diff(
    diff_data(data_ref = a2,
              data = a1)
)

产生整齐HTML输出:



Answer 7:

使用diffobj包:

library(diffobj)

diffPrint(a1, a2)
diffObj(a1, a2)



Answer 8:

我适应了merge函数来获取此功能。 在较大dataframes它使用的不是完整的合并方案更少的内存。 我可以与键列的名字玩。

另一种解决方案是使用图书馆prob

#  Derived from src/library/base/R/merge.R
#  Part of the R package, http://www.R-project.org
#
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/

XinY <-
    function(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by,
             notin = FALSE, incomparables = NULL,
             ...)
{
    fix.by <- function(by, df)
    {
        ## fix up 'by' to be a valid set of cols by number: 0 is row.names
        if(is.null(by)) by <- numeric(0L)
        by <- as.vector(by)
        nc <- ncol(df)
        if(is.character(by))
            by <- match(by, c("row.names", names(df))) - 1L
        else if(is.numeric(by)) {
            if(any(by < 0L) || any(by > nc))
                stop("'by' must match numbers of columns")
        } else if(is.logical(by)) {
            if(length(by) != nc) stop("'by' must match number of columns")
            by <- seq_along(by)[by]
        } else stop("'by' must specify column(s) as numbers, names or logical")
        if(any(is.na(by))) stop("'by' must specify valid column(s)")
        unique(by)
    }

    nx <- nrow(x <- as.data.frame(x)); ny <- nrow(y <- as.data.frame(y))
    by.x <- fix.by(by.x, x)
    by.y <- fix.by(by.y, y)
    if((l.b <- length(by.x)) != length(by.y))
        stop("'by.x' and 'by.y' specify different numbers of columns")
    if(l.b == 0L) {
        ## was: stop("no columns to match on")
        ## returns x
        x
    }
    else {
        if(any(by.x == 0L)) {
            x <- cbind(Row.names = I(row.names(x)), x)
            by.x <- by.x + 1L
        }
        if(any(by.y == 0L)) {
            y <- cbind(Row.names = I(row.names(y)), y)
            by.y <- by.y + 1L
        }
        ## create keys from 'by' columns:
        if(l.b == 1L) {                  # (be faster)
            bx <- x[, by.x]; if(is.factor(bx)) bx <- as.character(bx)
            by <- y[, by.y]; if(is.factor(by)) by <- as.character(by)
        } else {
            ## Do these together for consistency in as.character.
            ## Use same set of names.
            bx <- x[, by.x, drop=FALSE]; by <- y[, by.y, drop=FALSE]
            names(bx) <- names(by) <- paste("V", seq_len(ncol(bx)), sep="")
            bz <- do.call("paste", c(rbind(bx, by), sep = "\r"))
            bx <- bz[seq_len(nx)]
            by <- bz[nx + seq_len(ny)]
        }
        comm <- match(bx, by, 0L)
        if (notin) {
            res <- x[comm == 0,]
        } else {
            res <- x[comm > 0,]
        }
    }
    ## avoid a copy
    ## row.names(res) <- NULL
    attr(res, "row.names") <- .set_row_names(nrow(res))
    res
}


XnotinY <-
    function(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by,
             notin = TRUE, incomparables = NULL,
             ...)
{
    XinY(x,y,by,by.x,by.y,notin,incomparables)
}


Answer 9:

您的示例数据不具有任何重复,但你的解决方案能够自动处理它们。 这意味着潜在的一些问题的答案将不会匹配在重复的情况下,你的函数的结果。
这里是我的解决方案,它的地址复制的方式和你一样。 它还扩展太棒了!

a1 <- data.frame(a = 1:5, b=letters[1:5])
a2 <- data.frame(a = 1:3, b=letters[1:3])
rows.in.a1.that.are.not.in.a2  <- function(a1,a2)
{
    a1.vec <- apply(a1, 1, paste, collapse = "")
    a2.vec <- apply(a2, 1, paste, collapse = "")
    a1.without.a2.rows <- a1[!a1.vec %in% a2.vec,]
    return(a1.without.a2.rows)
}

library(data.table)
setDT(a1)
setDT(a2)

# no duplicates - as in example code
r <- fsetdiff(a1, a2)
all.equal(r, rows.in.a1.that.are.not.in.a2(a1,a2))
#[1] TRUE

# handling duplicates - make some duplicates
a1 <- rbind(a1, a1, a1)
a2 <- rbind(a2, a2, a2)
r <- fsetdiff(a1, a2, all = TRUE)
all.equal(r, rows.in.a1.that.are.not.in.a2(a1,a2))
#[1] TRUE

它需要data.table 1.9.8+



Answer 10:

也许是太简单了,但我用这个解决方案,我发现它非常有用,当我有,我可以用它来比较数据集的主键。 希望它可以帮助。

a1 <- data.frame(a = 1:5, b = letters[1:5])
a2 <- data.frame(a = 1:3, b = letters[1:3])
different.names <- (!a1$a %in% a2$a)
not.in.a2 <- a1[different.names,]


Answer 11:

然而,另一种解决方案基于在plyr match_df。 这里的plyr的match_df:

match_df <- function (x, y, on = NULL) 
{
    if (is.null(on)) {
        on <- intersect(names(x), names(y))
        message("Matching on: ", paste(on, collapse = ", "))
    }
    keys <- join.keys(x, y, on)
    x[keys$x %in% keys$y, , drop = FALSE]
}

我们可以修改它否定:

library(plyr)
negate_match_df <- function (x, y, on = NULL) 
{
    if (is.null(on)) {
        on <- intersect(names(x), names(y))
        message("Matching on: ", paste(on, collapse = ", "))
    }
    keys <- join.keys(x, y, on)
    x[!(keys$x %in% keys$y), , drop = FALSE]
}

然后:

diff <- negate_match_df(a1,a2)


Answer 12:

使用subset

missing<-subset(a1, !(a %in% a2$a))


文章来源: Compare two data.frames to find the rows in data.frame 1 that are not present in data.frame 2