How to split data into 3 sets (train, validation a

2019-01-01 12:55发布

问题:

I have a pandas dataframe and I wish to divide it to 3 separate sets. I know that using train_test_split from sklearn.cross_validation, one can divide the data in two sets (train and test). However, I couldn\'t find any solution about splitting the data into three sets. Preferably, I\'d like to have the indices of the original data.

I know that a workaround would be to use train_test_split two times and somehow adjust the indices. But is there a more standard / built-in way to split the data into 3 sets instead of 2?

回答1:

Numpy solution. We will split our data set into the following parts:

  • 60% - train set,
  • 20% - validation set,
  • 20% - test set

In [305]: train, validate, test = np.split(df.sample(frac=1), [int(.6*len(df)), int(.8*len(df))])

In [306]: train
Out[306]:
          A         B         C         D         E
0  0.046919  0.792216  0.206294  0.440346  0.038960
2  0.301010  0.625697  0.604724  0.936968  0.870064
1  0.642237  0.690403  0.813658  0.525379  0.396053
9  0.488484  0.389640  0.599637  0.122919  0.106505
8  0.842717  0.793315  0.554084  0.100361  0.367465
7  0.185214  0.603661  0.217677  0.281780  0.938540

In [307]: validate
Out[307]:
          A         B         C         D         E
5  0.806176  0.008896  0.362878  0.058903  0.026328
6  0.145777  0.485765  0.589272  0.806329  0.703479

In [308]: test
Out[308]:
          A         B         C         D         E
4  0.521640  0.332210  0.370177  0.859169  0.401087
3  0.333348  0.964011  0.083498  0.670386  0.169619

[int(.6*len(df)), int(.8*len(df))] - is an indices_or_sections array for numpy.split().

Here is a small demo for np.split() usage - let\'s split 20-elements array into the following parts: 90%, 10%, 10%:

In [45]: a = np.arange(1, 21)

In [46]: a
Out[46]: array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

In [47]: np.split(a, [int(.8 * len(a)), int(.9 * len(a))])
Out[47]:
[array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16]),
 array([17, 18]),
 array([19, 20])]


回答2:

Note:

Function was written to handle seeding of randomized set creation. You should not rely on set splitting that doesn\'t randomize the sets.

import numpy as np
import pandas as pd

def train_validate_test_split(df, train_percent=.6, validate_percent=.2, seed=None):
    np.random.seed(seed)
    perm = np.random.permutation(df.index)
    m = len(df.index)
    train_end = int(train_percent * m)
    validate_end = int(validate_percent * m) + train_end
    train = df.ix[perm[:train_end]]
    validate = df.ix[perm[train_end:validate_end]]
    test = df.ix[perm[validate_end:]]
    return train, validate, test

Demonstration

np.random.seed([3,1415])
df = pd.DataFrame(np.random.rand(10, 5), columns=list(\'ABCDE\'))
df

\"enter

train, validate, test = train_validate_test_split(df)

train

\"enter

validate

\"enter

test

\"enter



回答3:

However, one approach to dividing the dataset into train, test, cv with 0.6, 0.2, 0.2 would be to use the train_test_split method twice.

x, x_test, y, y_test = train_test_split(xtrain,labels,test_size=0.2,train_size=0.8)
x_train, x_cv, y_train, y_cv = train_test_split(x,y,test_size = 0.25,train_size =0.75)


回答4:

One approach is use train_test_split function twice.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test 
= train_test_split(X, y, test_size=0.2, random_state=1)

X_train, X_val, y_train, y_val 
= train_test_split(X_train, y_train, test_size=0.25, random_state=1)


回答5:

It is very convenient to use train_test_split without performing reindexing after dividing to several sets and not writing some additional code. Best answer above does not mention that by separating two times using train_test_split not changing partition sizes won`t give initially intended partition:

x_train, x_remain = train_test_split(x, test_size=(val_size + test_size))

Then the portion of validation and test sets in the x_remain change and could be counted as

new_test_size = np.around(test_size / (val_size + test_size), 2)
# To preserve (new_test_size + new_val_size) = 1.0 
new_val_size = 1.0 - new_test_size

x_val, x_test = train_test_split(x_remain, test_size=new_test_size)

In this occasion all initial partitions are saved.