我想两个不同的嵌套分组变量的水平出现在图下方单独的行,而不是传说。 我现在所拥有的是这样的代码:
data <- read.table(text = "Group Category Value
S1 A 73
S2 A 57
S1 B 7
S2 B 23
S1 C 51
S2 C 87", header = TRUE)
ggplot(data = data, aes(x = Category, y = Value, fill = Group)) +
geom_bar(position = 'dodge') +
geom_text(aes(label = paste(Value, "%")),
position = position_dodge(width = 0.9), vjust = -0.25)
我想有是这样的:
有任何想法吗?
Answer 1:
您可以创建自定义元素功能axis.text.x
。
library(ggplot2)
library(grid)
## create some data with asymmetric fill aes to generalize solution
data <- read.table(text = "Group Category Value
S1 A 73
S2 A 57
S3 A 57
S4 A 57
S1 B 7
S2 B 23
S3 B 57
S1 C 51
S2 C 57
S3 C 87", header=TRUE)
# user-level interface
axis.groups = function(groups) {
structure(
list(groups=groups),
## inheritance since it should be a element_text
class = c("element_custom","element_blank")
)
}
# returns a gTree with two children:
# the categories axis
# the groups axis
element_grob.element_custom <- function(element, x,...) {
cat <- list(...)[[1]]
groups <- element$group
ll <- by(data$Group,data$Category,I)
tt <- as.numeric(x)
grbs <- Map(function(z,t){
labs <- ll[[z]]
vp = viewport(
x = unit(t,'native'),
height=unit(2,'line'),
width=unit(diff(tt)[1],'native'),
xscale=c(0,length(labs)))
grid.rect(vp=vp)
textGrob(labs,x= unit(seq_along(labs)-0.5,
'native'),
y=unit(2,'line'),
vp=vp)
},cat,tt)
g.X <- textGrob(cat, x=x)
gTree(children=gList(do.call(gList,grbs),g.X), cl = "custom_axis")
}
## # gTrees don't know their size
grobHeight.custom_axis =
heightDetails.custom_axis = function(x, ...)
unit(3, "lines")
## the final plot call
ggplot(data=data, aes(x=Category, y=Value, fill=Group)) +
geom_bar(position = position_dodge(width=0.9),stat='identity') +
geom_text(aes(label=paste(Value, "%")),
position=position_dodge(width=0.9), vjust=-0.25)+
theme(axis.text.x = axis.groups(unique(data$Group)),
legend.position="none")
Answer 2:
该strip.position
在参数facet_wrap()
和switch
参数在facet_grid()
因为GGPLOT2 2.2.0使得现在的这个阴谋通过刻面相当简单的简单版本的创建。 为了让剧情不间断看,设置panel.spacing
为0。
以下是使用不同数量的每个类别组的数据集从@ agtudy的答案的例子。
- 我用
scales = "free_x"
从没有它的分类丢弃多余的集团,尽管这并不总是可取的。 - 该
strip.position = "bottom"
的说法移动小标签底部。 我去掉了带背景一起strip.background
,但我看得出来,留条矩形会在某些情况下非常有用。 - 我用
width = 1
,使每个类别触控内的酒吧-他们会在默认情况下它们之间有空格。
我也用strip.placement
和strip.background
的theme
,以获得底部带和删除条矩形。
对于ggplot2_2.2.0或更新版本的代码:
ggplot(data = data, aes(x = Group, y = Value, fill = Group)) +
geom_bar(stat = "identity", width = 1) +
geom_text(aes(label = paste(Value, "%")), vjust = -0.25) +
facet_wrap(~Category, strip.position = "bottom", scales = "free_x") +
theme(panel.spacing = unit(0, "lines"),
strip.background = element_blank(),
strip.placement = "outside")
你可以使用space= "free_x"
在facet_grid()
如果你想所有的酒吧是相同的宽度不管有多少组每个类别的。 请注意,这里使用switch = "x"
代替strip.position
。 您还可能要更改x轴的标签; 我不知道它应该是什么,也许范畴,而不是集团?
ggplot(data = data, aes(x = Group, y = Value, fill = Group)) +
geom_bar(stat = "identity", width = 1) +
geom_text(aes(label = paste(Value, "%")), vjust = -0.25) +
facet_grid(~Category, switch = "x", scales = "free_x", space = "free_x") +
theme(panel.spacing = unit(0, "lines"),
strip.background = element_blank(),
strip.placement = "outside") +
xlab("Category")
旧的代码版本
对于ggplot2_2.0.0的代码,当首次引入该功能,有点不同。 我救了它下面为后人:
ggplot(data = data, aes(x = Group, y = Value, fill = Group)) +
geom_bar(stat = "identity") +
geom_text(aes(label = paste(Value, "%")), vjust = -0.25) +
facet_wrap(~Category, switch = "x", scales = "free_x") +
theme(panel.margin = unit(0, "lines"),
strip.background = element_blank())
Answer 3:
到agstudy的方法的替代方法是编辑gtable并插入一个“轴线”由GGPLOT2计算
p <- ggplot(data=data, aes(x=Category, y=Value, fill=Group)) +
geom_bar(position = position_dodge(width=0.9),stat='identity') +
geom_text(aes(label=paste(Value, "%")),
position=position_dodge(width=0.9), vjust=-0.25)
axis <- ggplot(data=data, aes(x=Category, y=Value, colour=Group)) +
geom_text(aes(label=Group, y=0),
position=position_dodge(width=0.9))
annotation <- gtable_filter(ggplotGrob(axis), "panel", trim=TRUE)
annotation[["grobs"]][[1]][["children"]][c(1,3)] <- NULL #only keep textGrob
library(gtable)
g <- ggplotGrob(p)
gtable_add_grobs <- gtable_add_grob # let's use this alias
g <- gtable_add_rows(g, unit(1,"line"), pos=4)
g <- gtable_add_grobs(g, annotation, t=5, b=5, l=4, r=4)
grid.newpage()
grid.draw(g)
Answer 4:
一个非常简单的解决方案,它给出了一个类似的(但不相同)的结果是使用小面。 不足之处是该类别标签上面,而不是下面。
ggplot(data=data, aes(x=Group, y=Value, fill=Group)) +
geom_bar(position = 'dodge', stat="identity") +
geom_text(aes(label=paste(Value, "%")), position=position_dodge(width=0.9), vjust=-0.25) +
facet_grid(. ~ Category) +
theme(legend.position="none")
Answer 5:
@agstudy已经回答了这个问题,我会用它自己,但如果你愿意接受丑陋的东西,但更简单,这是我带着他的答案之前:
data <- read.table(text = "Group Category Value
S1 A 73
S2 A 57
S1 B 7
S2 B 23
S1 C 51
S2 C 87", header=TRUE)
p <- ggplot(data=data, aes(x=Category, y=Value, fill=Group))
p + geom_bar(position = 'dodge') +
geom_text(aes(label=paste(Value, "%")), position=position_dodge(width=0.9), vjust=-0.25) +
geom_text(colour="darkgray", aes(y=-3, label=Group), position=position_dodge(width=0.9), col=gray) +
theme(legend.position = "none",
panel.background=element_blank(),
axis.line = element_line(colour = "black"),
axis.line.x = element_line(colour = "white"),
axis.ticks.x = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank()) +
annotate("segment", x = 0, xend = Inf, y = 0, yend = 0)
这将给我们:
文章来源: Multirow axis labels with nested grouping variables