I am developing an android application for the purpose of age and gender recognition. I have found a useful model in GitHub. They are building a Keras model (tensorflow backend) based on a first-place winning paper. They have provided python modules to train and build the network, already trained weights file to download and work with, and a working demo on web cam.
I want to convert their model, in the demo, with the provided weights to .pb file so that it is executable on android as well.
I used this code to convert with minor model-dependent modifications:
from keras.models import Sequential
from keras.models import model_from_json
from keras import backend as K
import tensorflow as tf
from tensorflow.python.tools import freeze_graph
import os
# Load existing model.
with open("model.json",'r') as f:
modelJSON = f.read()
model = model_from_json(modelJSON)
model.load_weights("weights.18-4.06.hdf5")
print(model.summary())
# All new operations will be in test mode from now on.
K.set_learning_phase(0)
# Serialize the model and get its weights, for quick re-building.
config = model.get_config()
weights = model.get_weights()
# Re-build a model where the learning phase is now hard-coded to 0.
#new_model = model.from_config(config)
#new_model.set_weights(weights)
temp_dir = "graph"
checkpoint_prefix = os.path.join(temp_dir, "saved_checkpoint")
checkpoint_state_name = "checkpoint_state"
input_graph_name = "input_graph.pb"
output_graph_name = "output_graph.pb"
# Temporary save graph to disk without weights included.
saver = tf.train.Saver()
checkpoint_path = saver.save(K.get_session(), checkpoint_prefix, global_step=0, latest_filename=checkpoint_state_name)
tf.train.write_graph(K.get_session().graph, temp_dir, input_graph_name)
input_graph_path = os.path.join(temp_dir, input_graph_name)
input_saver_def_path = ""
input_binary = False
output_node_names = "dense_1/Softmax,dense_2/Softmax" # model dependent
restore_op_name = "save/restore_all"
filename_tensor_name = "save/Const:0"
output_graph_path = os.path.join(temp_dir, output_graph_name)
clear_devices = False
# Embed weights inside the graph and save to disk.
freeze_graph.freeze_graph(input_graph_path, input_saver_def_path,
input_binary, checkpoint_path,
output_node_names, restore_op_name,
filename_tensor_name, output_graph_path,
clear_devices, "")
I produced the model.json file fro the demo directly. The code of the main function of demo.py file with the model.json is:
def main():
args = get_args()
depth = args.depth
k = args.width
weight_file = args.weight_file
if not weight_file:
weight_file = get_file("weights.18-4.06.hdf5", pretrained_model, cache_subdir="pretrained_models",
file_hash=modhash, cache_dir=os.path.dirname(os.path.abspath(__file__)))
# for face detection
detector = dlib.get_frontal_face_detector()
# load model and weights
img_size = 64
model = WideResNet(img_size, depth=depth, k=k)()
model.load_weights(weight_file)
print(model.summary())
# write model to json
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
for img in yield_images():
input_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_h, img_w, _ = np.shape(input_img)
# detect faces using dlib detector
detected = detector(input_img, 1)
faces = np.empty((len(detected), img_size, img_size, 3))
if len(detected) > 0:
for i, d in enumerate(detected):
x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height()
xw1 = max(int(x1 - 0.4 * w), 0)
yw1 = max(int(y1 - 0.4 * h), 0)
xw2 = min(int(x2 + 0.4 * w), img_w - 1)
yw2 = min(int(y2 + 0.4 * h), img_h - 1)
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
# cv2.rectangle(img, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
faces[i, :, :, :] = cv2.resize(img[yw1:yw2 + 1, xw1:xw2 + 1, :], (img_size, img_size))
# predict ages and genders of the detected faces
results = model.predict(faces)
predicted_genders = results[0]
ages = np.arange(0, 101).reshape(101, 1)
predicted_ages = results[1].dot(ages).flatten()
# draw results
for i, d in enumerate(detected):
label = "{}, {}".format(int(predicted_ages[i]),
"F" if predicted_genders[i][0] > 0.5 else "M")
draw_label(img, (d.left(), d.top()), label)
cv2.imshow("result", img)
key = cv2.waitKey(30)
if key == 27:
break
if __name__ == '__main__':
main()
The code successfully compiles and produces multiple checkpoint files along side with a .pb file.
This is the graph summary of the model:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 64, 64, 3) 0
__________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, 64, 64, 16) 432 input_1[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 64, 64, 16) 64 conv2d_1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (None, 64, 64, 16) 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 64, 64, 128) 18432 activation_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 64, 64, 128) 512 conv2d_2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation) (None, 64, 64, 128) 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 64, 64, 128) 147456 activation_2[0][0]
__________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, 64, 64, 128) 2048 activation_1[0][0]
__________________________________________________________________________________________________
add_1 (Add) (None, 64, 64, 128) 0 conv2d_3[0][0]
conv2d_4[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 64, 64, 128) 512 add_1[0][0]
__________________________________________________________________________________________________
activation_3 (Activation) (None, 64, 64, 128) 0 batch_normalization_3[0][0]
__________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, 64, 64, 128) 147456 activation_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 64, 64, 128) 512 conv2d_5[0][0]
__________________________________________________________________________________________________
activation_4 (Activation) (None, 64, 64, 128) 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, 64, 64, 128) 147456 activation_4[0][0]
__________________________________________________________________________________________________
add_2 (Add) (None, 64, 64, 128) 0 conv2d_6[0][0]
add_1[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 64, 64, 128) 512 add_2[0][0]
__________________________________________________________________________________________________
activation_5 (Activation) (None, 64, 64, 128) 0 batch_normalization_5[0][0]
__________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, 32, 32, 256) 294912 activation_5[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 32, 32, 256) 1024 conv2d_7[0][0]
__________________________________________________________________________________________________
activation_6 (Activation) (None, 32, 32, 256) 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, 32, 32, 256) 589824 activation_6[0][0]
__________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 32, 32, 256) 32768 activation_5[0][0]
__________________________________________________________________________________________________
add_3 (Add) (None, 32, 32, 256) 0 conv2d_8[0][0]
conv2d_9[0][0]
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 32, 32, 256) 1024 add_3[0][0]
__________________________________________________________________________________________________
activation_7 (Activation) (None, 32, 32, 256) 0 batch_normalization_7[0][0]
__________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, 32, 32, 256) 589824 activation_7[0][0]
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 32, 32, 256) 1024 conv2d_10[0][0]
__________________________________________________________________________________________________
activation_8 (Activation) (None, 32, 32, 256) 0 batch_normalization_8[0][0]
__________________________________________________________________________________________________
conv2d_11 (Conv2D) (None, 32, 32, 256) 589824 activation_8[0][0]
__________________________________________________________________________________________________
add_4 (Add) (None, 32, 32, 256) 0 conv2d_11[0][0]
add_3[0][0]
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 32, 32, 256) 1024 add_4[0][0]
__________________________________________________________________________________________________
activation_9 (Activation) (None, 32, 32, 256) 0 batch_normalization_9[0][0]
__________________________________________________________________________________________________
conv2d_12 (Conv2D) (None, 16, 16, 512) 1179648 activation_9[0][0]
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 16, 16, 512) 2048 conv2d_12[0][0]
__________________________________________________________________________________________________
activation_10 (Activation) (None, 16, 16, 512) 0 batch_normalization_10[0][0]
__________________________________________________________________________________________________
conv2d_13 (Conv2D) (None, 16, 16, 512) 2359296 activation_10[0][0]
__________________________________________________________________________________________________
conv2d_14 (Conv2D) (None, 16, 16, 512) 131072 activation_9[0][0]
__________________________________________________________________________________________________
add_5 (Add) (None, 16, 16, 512) 0 conv2d_13[0][0]
conv2d_14[0][0]
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 16, 16, 512) 2048 add_5[0][0]
__________________________________________________________________________________________________
activation_11 (Activation) (None, 16, 16, 512) 0 batch_normalization_11[0][0]
__________________________________________________________________________________________________
conv2d_15 (Conv2D) (None, 16, 16, 512) 2359296 activation_11[0][0]
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 16, 16, 512) 2048 conv2d_15[0][0]
__________________________________________________________________________________________________
activation_12 (Activation) (None, 16, 16, 512) 0 batch_normalization_12[0][0]
__________________________________________________________________________________________________
conv2d_16 (Conv2D) (None, 16, 16, 512) 2359296 activation_12[0][0]
__________________________________________________________________________________________________
add_6 (Add) (None, 16, 16, 512) 0 conv2d_16[0][0]
add_5[0][0]
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 16, 16, 512) 2048 add_6[0][0]
__________________________________________________________________________________________________
activation_13 (Activation) (None, 16, 16, 512) 0 batch_normalization_13[0][0]
__________________________________________________________________________________________________
average_pooling2d_1 (AveragePoo (None, 16, 16, 512) 0 activation_13[0][0]
__________________________________________________________________________________________________
flatten_1 (Flatten) (None, 131072) 0 average_pooling2d_1[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 2) 262144 flatten_1[0][0]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 101) 13238272 flatten_1[0][0]
==================================================================================================
Total params: 24,463,856
Trainable params: 24,456,656
Non-trainable params: 7,200
__________________________________________________________________________________________________
I took the outputted model and used the following script to optimize for inferece:
python -m tensorflow.python.tools.optimize_for_inference --input output_graph.pb --output g.pb --input_names=input_1 --output_names=dense_1/Softmax,dense_2/Softmax
during the operation, the terminal gives me many warnings like this.
FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
WARNING:tensorflow:Incorrect shape for mean, found (0,), expected (16,), for node batch_normalization_1/FusedBatchNorm
WARNING:tensorflow:Incorrect shape for mean, found (0,), expected (128,), for node batch_normalization_2/FusedBatchNorm
WARNING:tensorflow:Didn't find expected Conv2D input to 'batch_normalization_3/FusedBatchNorm'
WARNING:tensorflow:Incorrect shape for mean, found (0,), expected (128,), for node batch_normalization_4/FusedBatchNorm
WARNING:tensorflow:Didn't find expected Conv2D input to 'batch_normalization_5/FusedBatchNorm'
WARNING:tensorflow:Incorrect shape for mean, found (0,), expected (256,), for node batch_normalization_6/FusedBatchNorm
WARNING:tensorflow:Didn't find expected Conv2D input to 'batch_normalization_7/FusedBatchNorm'
WARNING:tensorflow:Incorrect shape for mean, found (0,), expected (256,), for node batch_normalization_8/FusedBatchNorm
WARNING:tensorflow:Didn't find expected Conv2D input to 'batch_normalization_9/FusedBatchNorm'
WARNING:tensorflow:Incorrect shape for mean, found (0,), expected (512,), for node batch_normalization_10/FusedBatchNorm
WARNING:tensorflow:Didn't find expected Conv2D input to 'batch_normalization_11/FusedBatchNorm'
WARNING:tensorflow:Incorrect shape for mean, found (0,), expected (512,), for node batch_normalization_12/FusedBatchNorm
WARNING:tensorflow:Didn't find expected Conv2D input to 'batch_normalization_13/FusedBatchNorm'
It seems that these warnings are terrible!!
I have tried both files on my android app. The optimized file is not working at all while the non-optimized file is executable but producing non-sense results "e.g. GUESSING".
I know that the question is a little bit long but it is a summary of whole working day and I do not want to miss any fraction of details.
I do not know where the problem is. Is it in the output nodes names, freezing the graph, instantiating the model with the weights or in optimizing for inference script.