I need to calculate the index of a Fibonacci number with JavaScript, within the Fibonacci sequence. I need to do this without using recursion, or a loop. I found the following formula in the Math forum:
n=⌊logφ(F⋅5√+12)⌋
and coded it in JavaScript:
function fibIndex(fib)
{
fib = BigNumber(fib);
return logBasePhi(fib.times(Math.sqrt(5)).plus((1/2)));
}
function phi()
{
return (1 + Math.sqrt(5))/ 2;
}
function getBaseLog(x, y) {
return Math.log(y) / Math.log(x);
}
function logBasePhi(x)
{
return getBaseLog(phi(), x);
}
Notice the .times()
and .plus()
functions that are part of this BigNumber Library that has been extremely useful up to this point. This works fine, until the Fibonacci number I want to find the index for is really big.
The problem:
I need a different way to calculate the logarithm with such a big number. If I have a really big number, such as Fibonacci of 2000, I get Infinity
for obvious reasons. The library itself does not have any methods to calculate the log, and I can't write this function either.
I would have never imagined that the logarithm of any number with such a small base (phi) can be bigger than the max for JavaScript integers. Can you guys point me in the right direction? Should I just leave it at obtaining the index for numbers less than Fib(1500) and call it good?
You can use BigInteger. You can see an example of how to use it here: http://reallifejs.com/the-meat/calculators/big-number-calculator/
For anyone else looking for this function, here it is using this BigInteger library:
function fibIndex(fib)
{
fib = BigInteger(fib);
var x = fib.multiply(Math.sqrt(5)).add((1/2));
return Math.round(x.log() / Math.log(phi()));
}
function phi()
{
return (1 + Math.sqrt(5))/ 2;
}
I still use the same equation explained in my question above, and it returns the index of Fibonacci's of any size.
fibIndex("35522938794321715091272953991088875073660950670711879743399900326436254083421380378927750257524675311447286915610820861302904371152466182968261111009824391725637150862745505342130220586979511719255023895335108709522075314248260664483166479670588221585277069887873168196490963561219694518077864879100421788205515385380434545975662001723555342440392621808579760295648531141638822913590607533540054087452041707826153271185259107394199852367649618298517093117009455894918353503525076230125819543123779319167440820789626564459764725339684808290073756385496248142195843240135064507885354877296572024804408624272941753639812538039913142028651903030529871116793317789757893606550341466951324756526825899737667945813833853722262630433262780974915425005732866591818868174705546087022106127052877310847951571707582794820376128579789767721485109492542287764348615868723395725124814856415577763540656765591673162724146048330852788081439178288706881889502843933839383437965572895385440792960391702268984769357859686271266574632871727046024303184663919395401465801528726015901456333025573481247959101652204602988035141532490361245742139050819433077833707742246312835208439293469725777437940254819086871672146128972238328251414589544434435170261367824782155103657578194196270111748570034449297964612564456266891635499257186520205662004190179581465184858273590634696557067719668344569716772604494379268256417559005989196664062339943367426392267549671696091620704483335705235401024668972377058959013548701899237423163317609813480075906438821567501678027453981255872940165896765562906948275888682233026018398591561683968279253311810352982216449990605138841279476258998291555393112171672512247299540528273985304628059093340049555047981741901553118436996372565143437092164040501385121979087826864836002852441013290435451405818936965791830088594057993174801701555239838033825491101182302604693483923297155552732646664230339899386949247469662146601783799159535265663192798622519600080199294778264021930327804674406845390858689361183645138036024622999759181149374409868339056190354930762438018253181839721998646473911299168577029520666199783681191268719288387969624745653240780708319950931159323616116725759084631179863296728766212415593748082930558151101350076376704295363472805637813559350925898715117938481138744212886965977892516525139040863376874438253015614485120277306681922196720541898193702570355885540352668267759850827312025869672621201575016416207760471674541668295376322809412095582968275396449970226064500618788480102243996614437085271546164050332641040829307354667753670012241015315160013952802535500838629086649248253271677865717482331893600871123634025348607623548331397239596180750809096946397974233223417735790158178612741331748855629088340732705900553246041710742016160018303725512211509204034880759596775427996675371964469431717567054234107252511625358715489171574578479304777517899774723598872665991091538945488811618222438651723224465992160327444696552759313881273021480919406887970238509074105071808066821703115066838126027585207922256205186141921352880657758551963602504587265334948468963725795943612659061581738118921217900480358979991209140061985794462152498458564473369295078153567296201818251720281822962062936831573631653751528074225190111823253702351177610664803940345503699699208037095784870495785646943997234474258262569998608041243140247674073513323374199936066218946098722092264140092669753657824017634461763981521997119226219136508584203375683292957948563073632975937642581947768042371117470198355444599517718979158713784804470849343173517943800269775988799065209263727016757620989100649249277790139290067789688270481157537247255077854388424596882337360026236416764073030845206282134294301701605369452555608749844089881840152464688185413471165531348083450071936767808847178828505212544681448346850412422392584457798023562617507156540143036586660455094150665003248778589943633804236061867787254092465761897721097498706848304838082130151573830146281598905862080528755999259386441406295844212093958532689277331339576745477613093048842162872506248493879631984787279577095875465635013803960469019743694441996546910736934590725390122252181310568062868015617422771375425422209106466232597689466636780861666245204430735375550444974466951762888881642801337840709202391876433786768647147807880162471534334272202034098411011768290957484345424507121327462388443014612800575348423810123382495642833743034606424879522789397956839996920113680951463518836156462019057063161795046895734075593501902084338246542048532779483281408634769806186279989881229648075555962086774926497206070780542404761166097604241890965888018873735027199940548827053350115337885438800728312460914286268127990478092896975620706029422142841447344514680046143167682001640750053397540223424322177217456434741847020047763710403144096996427837529811812126999093061373016438435440619803496909856986800826405322182728111872725881192065183612822832173197471616932926246556344247662468294551754101114527143077792003917544284111176961413199426663155326179333146951914261328112918116870606040456416800180399145364936151721824514256765308265696290759951243242140057433018143404698921069198350343599629915865217541917472815612277351716569260985624821969133328022587501");
will return 25,001, which is the index of the above fib.
Instead use this formula:
(Fn) = (Fn-1) + (Fn-2)
n is a subindex, for understanding I say...
So let's code :D
function fibonacci(n) {
var f = new Array();
f[0] = 1;
f[1] = 1;
if(n == 1 && n == 2) {
return 1;
}
for(var i = 2; i < n; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f[n - 1];
}