I am trying to understand this bit reversal algorithm. I found a lot of sources but it doesn't really explain how the pseudo-code works. For example, I found the pseudo-code below from http://www.briangough.com/fftalgorithms.pdf
for i = 0 ... n − 2 do
k = n/2
if i < j then
swap g(i) and g(j)
end if
while k ≤ j do
j ⇐ j − k
k ⇐ k/2
end while
j ⇐ j + k
end for
From looking at this pseudo-code, I don't understand why you would do
swap g(i) and g(j)
when the if
statement is true
.
Also: what does the while
loop do? It would be great if someone can explain this pseudo-code to me.
below is the c++ code that I found online.
void four1(double data[], int nn, int isign)
{
int n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
double tempr, tempi;
n = nn << 1;
j = 1;
for (i = 1; i < n; i += 2) {
if (j > i) {
tempr = data[j]; data[j] = data[i]; data[i] = tempr;
tempr = data[j+1]; data[j+1] = data[i+1]; data[i+1] = tempr;
}
m = n >> 1;
while (m >= 2 && j > m) {
j -= m;
m >>= 1;
}
j += m;
}
Here is the full version of the source code that I found that does FFT
/************************************************
* FFT code from the book Numerical Recipes in C *
* Visit www.nr.com for the licence. *
************************************************/
// The following line must be defined before including math.h to correctly define M_PI
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define PI M_PI /* pi to machine precision, defined in math.h */
#define TWOPI (2.0*PI)
/*
FFT/IFFT routine. (see pages 507-508 of Numerical Recipes in C)
Inputs:
data[] : array of complex* data points of size 2*NFFT+1.
data[0] is unused,
* the n'th complex number x(n), for 0 <= n <= length(x)-1, is stored as:
data[2*n+1] = real(x(n))
data[2*n+2] = imag(x(n))
if length(Nx) < NFFT, the remainder of the array must be padded with zeros
nn : FFT order NFFT. This MUST be a power of 2 and >= length(x).
isign: if set to 1,
computes the forward FFT
if set to -1,
computes Inverse FFT - in this case the output values have
to be manually normalized by multiplying with 1/NFFT.
Outputs:
data[] : The FFT or IFFT results are stored in data, overwriting the input.
*/
void four1(double data[], int nn, int isign)
{
int n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
double tempr, tempi;
n = nn << 1;
j = 1;
for (i = 1; i < n; i += 2) {
if (j > i) {
//swap the real part
tempr = data[j]; data[j] = data[i]; data[i] = tempr;
//swap the complex part
tempr = data[j+1]; data[j+1] = data[i+1]; data[i+1] = tempr;
}
m = n >> 1;
while (m >= 2 && j > m) {
j -= m;
m >>= 1;
}
j += m;
}
mmax = 2;
while (n > mmax) {
istep = 2*mmax;
theta = TWOPI/(isign*mmax);
wtemp = sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
for (m = 1; m < mmax; m += 2) {
for (i = m; i <= n; i += istep) {
j =i + mmax;
tempr = wr*data[j] - wi*data[j+1];
tempi = wr*data[j+1] + wi*data[j];
data[j] = data[i] - tempr;
data[j+1] = data[i+1] - tempi;
data[i] += tempr;
data[i+1] += tempi;
}
wr = (wtemp = wr)*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
}
mmax = istep;
}
}
/********************************************************
* The following is a test routine that generates a ramp *
* with 10 elements, finds their FFT, and then finds the *
* original sequence using inverse FFT *
********************************************************/
int main(int argc, char * argv[])
{
int i;
int Nx;
int NFFT;
double *x;
double *X;
/* generate a ramp with 10 numbers */
Nx = 10;
printf("Nx = %d\n", Nx);
x = (double *) malloc(Nx * sizeof(double));
for(i=0; i<Nx; i++)
{
x[i] = i;
}
/* calculate NFFT as the next higher power of 2 >= Nx */
NFFT = (int)pow(2.0, ceil(log((double)Nx)/log(2.0)));
printf("NFFT = %d\n", NFFT);
/* allocate memory for NFFT complex numbers (note the +1) */
X = (double *) malloc((2*NFFT+1) * sizeof(double));
/* Storing x(n) in a complex array to make it work with four1.
This is needed even though x(n) is purely real in this case. */
for(i=0; i<Nx; i++)
{
X[2*i+1] = x[i];
X[2*i+2] = 0.0;
}
/* pad the remainder of the array with zeros (0 + 0 j) */
for(i=Nx; i<NFFT; i++)
{
X[2*i+1] = 0.0;
X[2*i+2] = 0.0;
}
printf("\nInput complex sequence (padded to next highest power of 2):\n");
for(i=0; i<NFFT; i++)
{
printf("x[%d] = (%.2f + j %.2f)\n", i, X[2*i+1], X[2*i+2]);
}
/* calculate FFT */
four1(X, NFFT, 1);
printf("\nFFT:\n");
for(i=0; i<NFFT; i++)
{
printf("X[%d] = (%.2f + j %.2f)\n", i, X[2*i+1], X[2*i+2]);
}
/* calculate IFFT */
four1(X, NFFT, -1);
/* normalize the IFFT */
for(i=0; i<NFFT; i++)
{
X[2*i+1] /= NFFT;
X[2*i+2] /= NFFT;
}
printf("\nComplex sequence reconstructed by IFFT:\n");
for(i=0; i<NFFT; i++)
{
printf("x[%d] = (%.2f + j %.2f)\n", i, X[2*i+1], X[2*i+2]);
}
getchar();
}
/*
Nx = 10
NFFT = 16
Input complex sequence (padded to next highest power of 2):
x[0] = (0.00 + j 0.00)
x[1] = (1.00 + j 0.00)
x[2] = (2.00 + j 0.00)
x[3] = (3.00 + j 0.00)
x[4] = (4.00 + j 0.00)
x[5] = (5.00 + j 0.00)
x[6] = (6.00 + j 0.00)
x[7] = (7.00 + j 0.00)
x[8] = (8.00 + j 0.00)
x[9] = (9.00 + j 0.00)
x[10] = (0.00 + j 0.00)
x[11] = (0.00 + j 0.00)
x[12] = (0.00 + j 0.00)
x[13] = (0.00 + j 0.00)
x[14] = (0.00 + j 0.00)
x[15] = (0.00 + j 0.00)
FFT:
X[0] = (45.00 + j 0.00)
X[1] = (-25.45 + j 16.67)
X[2] = (10.36 + j -3.29)
X[3] = (-9.06 + j -2.33)
X[4] = (4.00 + j 5.00)
X[5] = (-1.28 + j -5.64)
X[6] = (-2.36 + j 4.71)
X[7] = (3.80 + j -2.65)
X[8] = (-5.00 + j 0.00)
X[9] = (3.80 + j 2.65)
X[10] = (-2.36 + j -4.71)
X[11] = (-1.28 + j 5.64)
X[12] = (4.00 + j -5.00)
X[13] = (-9.06 + j 2.33)
X[14] = (10.36 + j 3.29)
X[15] = (-25.45 + j -16.67)
Complex sequence reconstructed by IFFT:
x[0] = (0.00 + j -0.00)
x[1] = (1.00 + j -0.00)
x[2] = (2.00 + j 0.00)
x[3] = (3.00 + j -0.00)
x[4] = (4.00 + j -0.00)
x[5] = (5.00 + j 0.00)
x[6] = (6.00 + j -0.00)
x[7] = (7.00 + j -0.00)
x[8] = (8.00 + j 0.00)
x[9] = (9.00 + j 0.00)
x[10] = (0.00 + j -0.00)
x[11] = (0.00 + j -0.00)
x[12] = (0.00 + j 0.00)
x[13] = (-0.00 + j -0.00)
x[14] = (0.00 + j 0.00)
x[15] = (0.00 + j 0.00)
*/