Having 32 bits stored in a uint32_t
in memory, what's the fastest way to unpack each bit to a separate byte element of an AVX register? The bits can be in any position within their respective byte.
Edit: to clarify, I mean bit 0 goes to byte 0, bit 1 to byte 1. Obviously all other bits within the byte on zero. Best I could at the moment is 2 PSHUFB
and having a mask register for each position.
If the uint32_t
is a bitmap, then the corresponding vector elements should be 0 or non-0. (i.e. so we could get a vector mask with a vpcmpeqb
against a vector of all-zero).
https://software.intel.com/en-us/forums/topic/283382
To "broadcast" the 32 bits of a 32-bit integer x
to 32 bytes of a 256-bit YMM register z
or 16 bytes of a two 128-bit XMM registers z_low
and z_high
you can do the following.
With AVX2:
__m256i y = _mm256_set1_epi32(x);
__m256i z = _mm256_shuffle_epi8(y,mask1);
z = _mm256_and_si256(z,mask2);
Without AVX2 it's best to do this with SSE:
__m128i y = _mm_set1_epi32(x);
__m128i z_low = _mm_shuffle_epi8(y,mask_low);
__m128i z_high = _mm_shuffle_epi8(y,mask_high);
z_low = _mm_and_si128(z_low ,mask2);
z_high = _mm_and_si128(z_high,mask2);
The masks and a working example are shown below. If you plan to do this several times you should probably
define the masks outside of the main loop.
#include <immintrin.h>
#include <stdio.h>
int main() {
int x = 0x87654321;
static const char mask1a[32] = {
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02,
0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03
};
static const char mask2a[32] = {
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80,
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80,
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80,
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80,
};
char out[32];
#if defined ( __AVX2__ )
__m256i mask2 = _mm256_loadu_si256((__m256i*)mask2a);
__m256i mask1 = _mm256_loadu_si256((__m256i*)mask1a);
__m256i y = _mm256_set1_epi32(x);
__m256i z = _mm256_shuffle_epi8(y,mask1);
z = _mm256_and_si256(z,mask2);
_mm256_storeu_si256((__m256i*)out,z);
#else
__m128i mask2 = _mm_loadu_si128((__m128i*)mask2a);
__m128i mask_low = _mm_loadu_si128((__m128i*)&mask1a[ 0]);
__m128i mask_high = _mm_loadu_si128((__m128i*)&mask1a[16]);
__m128i y = _mm_set1_epi32(x);
__m128i z_low = _mm_shuffle_epi8(y,mask_low);
__m128i z_high = _mm_shuffle_epi8(y,mask_high);
z_low = _mm_and_si128(z_low,mask2);
z_high = _mm_and_si128(z_high,mask2);
_mm_storeu_si128((__m128i*)&out[ 0],z_low);
_mm_storeu_si128((__m128i*)&out[16],z_high);
#endif
for(int i=0; i<8; i++) {
for(int j=0; j<4; j++) {
printf("%x ", out[4*i+j]);
}printf("\n");
} printf("\n");
}
To get 0 or -1 in each vector element:
It takes one extra step _mm256_cmpeq_epi8
against all-zeros. Any non-zero turns into 0, and zero turns into -1. If we don't want this inversion, use andnot
instead of and
. It inverts its first operand.
__m256i expand_bits_to_bytes(uint32_t x)
{
__m256i xbcast = _mm256_set1_epi32(x); // we only use the low 32bits of each lane, but this is fine with AVX2
// Each byte gets the source byte containing the corresponding bit
__m256i shufmask = _mm256_set_epi64x(
0x0303030303030303, 0x0202020202020202,
0x0101010101010101, 0x0000000000000000);
__m256i shuf = _mm256_shuffle_epi8(xbcast, shufmask);
__m256i andmask = _mm256_set1_epi64x(0x8040201008040201); // every 8 bits -> 8 bytes, pattern repeats.
__m256i isolated_inverted = _mm256_andnot_si256(shuf, andmask);
// this is the extra step: compare each byte == 0 to produce 0 or -1
return _mm256_cmpeq_epi8(isolated_inverted, _mm256_setzero_si256());
}
See it on the Godbolt Compiler Explorer.