Calculating mean date by row

2019-05-02 21:15发布

问题:

I wish to obtain the mean date by row, where each row contains two dates. Eventually I found a way, posted below. However, the approach I used seems rather cumbersome. Is there a better way?

my.data = read.table(text = "
     OBS  MONTH1  DAY1  YEAR1  MONTH2  DAY2  YEAR2   STATE
       1       3     6   2012       3    10   2012       1
       2       3    10   2012       3    20   2012       1
       3       3    16   2012       3    30   2012       1
       4       3    20   2012       4     8   2012       1
       5       3    20   2012       4     9   2012       1
       6       3    20   2012       4    10   2012       1
       7       3    20   2012       4    11   2012       1
       8       4     4   2012       4     5   2012       1
       9       4     6   2012       4     6   2012       1
      10       4     6   2012       4     7   2012       1
", header = TRUE, stringsAsFactors = FALSE)
my.data

my.data$MY.DATE1 <- do.call(paste, list(my.data$MONTH1, my.data$DAY1, my.data$YEAR1))
my.data$MY.DATE2 <- do.call(paste, list(my.data$MONTH2, my.data$DAY2, my.data$YEAR2))

my.data$MY.DATE1 <- as.Date(my.data$MY.DATE1, format=c("%m %d %Y"))
my.data$MY.DATE2 <- as.Date(my.data$MY.DATE2, format=c("%m %d %Y"))
my.data

desired.result = read.table(text = "
   OBS MONTH1 DAY1 YEAR1 MONTH2 DAY2 YEAR2 STATE   MY.DATE1   MY.DATE2    mean.date
    1      3     6  2012      3   10  2012     1 2012-03-06 2012-03-10   2012-03-08
    2      3    10  2012      3   20  2012     1 2012-03-10 2012-03-20   2012-03-15
    3      3    16  2012      3   30  2012     1 2012-03-16 2012-03-30   2012-03-23
    4      3    20  2012      4    8  2012     1 2012-03-20 2012-04-08   2012-03-29
    5      3    20  2012      4    9  2012     1 2012-03-20 2012-04-09   2012-03-30
    6      3    20  2012      4   10  2012     1 2012-03-20 2012-04-10   2012-03-30
    7      3    20  2012      4   11  2012     1 2012-03-20 2012-04-11   2012-03-31
    8      4     4  2012      4    5  2012     1 2012-04-04 2012-04-05   2012-04-04
    9      4     6  2012      4    6  2012     1 2012-04-06 2012-04-06   2012-04-06
   10      4     6  2012      4    7  2012     1 2012-04-06 2012-04-07   2012-04-06
", header = TRUE, stringsAsFactors = FALSE)

Here is the approach that worked for me:

my.data$mean.date <- (my.data$MY.DATE1 + ((my.data$MY.DATE2 - my.data$MY.DATE1) / 2))
my.data

These approaches did not work:

my.data$mean.date <- mean(my.data$MY.DATE1, my.data$MY.DATE2)
my.data$mean.date <- mean(my.data$MY.DATE1, my.data$MY.DATE2, trim = 0)
my.data$mean.date <- mean(my.data$MY.DATE1, my.data$MY.DATE2, trim = 1)
my.data$mean.date <- mean(my.data$MY.DATE1, my.data$MY.DATE2, trim = 0.5)
my.data$mean.data <- apply(my.data, 1, function(x) {(x[9] + x[10]) / 2})

I think I am supposed to use the Ops.Date command, but have not found an example.

Thank you for any suggestions.

回答1:

Using the good advice of @ jaysunice3401, I came up with this. If you want to keep the original data, you can add remove = FALSE in the two lines with unite

library(dplyr)
library(tidyr)

my.data %>%
    unite(whatever1, matches("1"), sep = "-") %>%
    unite(whatever2, matches("2"), sep = "-") %>%
    mutate_each(funs(as.Date(., "%m-%d-%Y")), contains("whatever")) %>%
    rowwise %>%
    mutate(mean.date = mean.Date(c(whatever1, whatever2)))

#   OBS  whatever1  whatever2 STATE  mean.date
#1    1 2012-03-06 2012-03-10     1 2012-03-08
#2    2 2012-03-10 2012-03-20     1 2012-03-15
#3    3 2012-03-16 2012-03-30     1 2012-03-23
#4    4 2012-03-20 2012-04-08     1 2012-03-29
#5    5 2012-03-20 2012-04-09     1 2012-03-30
#6    6 2012-03-20 2012-04-10     1 2012-03-30
#7    7 2012-03-20 2012-04-11     1 2012-03-31
#8    8 2012-04-04 2012-04-05     1 2012-04-04
#9    9 2012-04-06 2012-04-06     1 2012-04-06
#10  10 2012-04-06 2012-04-07     1 2012-04-06


回答2:

Keep things simple and use mean.Date in base R.

mean.Date(as.Date(c("01-01-2014", "01-07-2014"), format=c("%m-%d-%Y"))) 
[1] "2014-01-04"


回答3:

Maybe something like that?

library(data.table)
setDT(my.data)[, `:=`(MY.DATE1 = as.Date(paste(DAY1 ,MONTH1, YEAR1), format = "%d %m %Y"),
                      MY.DATE2 = as.Date(paste(DAY2 ,MONTH2, YEAR2), format = "%d %m %Y"))][, 
                      mean.date := MY.DATE2 - ceiling((MY.DATE2 - MY.DATE1)/2)]

my.data
#     OBS MONTH1 DAY1 YEAR1 MONTH2 DAY2 YEAR2 STATE   MY.DATE1   MY.DATE2  mean.date
#  1:   1      3    6  2012      3   10  2012     1 2012-03-06 2012-03-10 2012-03-08
#  2:   2      3   10  2012      3   20  2012     1 2012-03-10 2012-03-20 2012-03-15
#  3:   3      3   16  2012      3   30  2012     1 2012-03-16 2012-03-30 2012-03-23
#  4:   4      3   20  2012      4    8  2012     1 2012-03-20 2012-04-08 2012-03-29
#  5:   5      3   20  2012      4    9  2012     1 2012-03-20 2012-04-09 2012-03-30
#  6:   6      3   20  2012      4   10  2012     1 2012-03-20 2012-04-10 2012-03-30
#  7:   7      3   20  2012      4   11  2012     1 2012-03-20 2012-04-11 2012-03-31
#  8:   8      4    4  2012      4    5  2012     1 2012-04-04 2012-04-05 2012-04-04
#  9:   9      4    6  2012      4    6  2012     1 2012-04-06 2012-04-06 2012-04-06
# 10:  10      4    6  2012      4    7  2012     1 2012-04-06 2012-04-07 2012-04-06

Or if you insist on using mean.date, here's alternative solution:

library(data.table)
setDT(my.data)[, `:=`(MY.DATE1 = as.Date(paste(DAY1 ,MONTH1, YEAR1), format = "%d %m %Y"),
                      MY.DATE2 = as.Date(paste(DAY2 ,MONTH2, YEAR2), format = "%d %m %Y"))][, 
                      mean.date := mean.Date(c(MY.DATE1, MY.DATE2)), by = OBS]


回答4:

1) Create Date class columns and then its easy. No external packages are used:

asDate <- function(x) as.Date(x, "1970-01-01")

my.data2 <- transform(my.data, 
   date1 = as.Date(ISOdate(YEAR1, MONTH1, DAY1)),
   date2 = as.Date(ISOdate(YEAR2, MONTH2, DAY2))
)
transform(my.data2, mean.date = asDate(rowMeans(cbind(date1, date2))))

If we did add a library(zoo) call then we could omit the asDate definition using as.Date in the last line instead of asDate since zoo adds a default origin to as.Date.

1a) A dplyr version would look like this (using asDate from above):

library(dplyr)

my.data %>%
  mutate(
     date1 = ISOdate(YEAR1, MONTH1, DAY1) %>% as.Date,
     date2 = ISOdate(YEAR2, MONTH2, DAY2) %>% as.Date,
     mean.date = cbind(date1, date2) %>% rowMeans %>% asDate)

2) Another way uses julian in the chron package. julian converts a month/day/year to the number of days since the Epoch. We can average the two julians and convert back to Date class:

library(zoo)
library(chron)

transform(my.data, 
  mean.date = as.Date( ( julian(MONTH1,DAY1,YEAR1) + julian(MONTH2,DAY2,YEAR2) )/2 ) 
)

We could omit library(zoo) if we used asDate from (1) in place of as.Date.

Update Discussed use of zoo to shorten the solutions and made further reductions in solution (1).



回答5:

what about :

apply(my.data[,c("MY.DATE1","MY.DATE2")],1,function(date){substr(strptime(mean(c(strptime(date[1],"%y%y-%m-%d"),strptime(date[2],"%y%y-%m-%d"))),format="%y%y-%m-%d"),1,10)})

? (I just had to use substr because of CET and CEST that put my output as a list...)



回答6:

One-liner (split for readability), uses lubridate and dplyr and (of course) pipes:

> require(lubridate)
> require(dplyr)
> my.data =  my.data %>% 
    mutate(
      MY.DATE1=as.Date(mdy(paste(MONTH1,DAY1,YEAR1))),
      MY.DATE2=as.Date(mdy(paste(MONTH2,DAY2,YEAR2)))) %>% 
    rowwise %>%
    mutate(mean.data=mean.Date(c(MY.DATE1,MY.DATE2))) %>% data.frame()
> head(my.data)
  OBS MONTH1 DAY1 YEAR1 MONTH2 DAY2 YEAR2 STATE   MY.DATE1   MY.DATE2
1   1      3    6  2012      3   10  2012     1 2012-03-06 2012-03-10
2   2      3   10  2012      3   20  2012     1 2012-03-10 2012-03-20
3   3      3   16  2012      3   30  2012     1 2012-03-16 2012-03-30
4   4      3   20  2012      4    8  2012     1 2012-03-20 2012-04-08
5   5      3   20  2012      4    9  2012     1 2012-03-20 2012-04-09
6   6      3   20  2012      4   10  2012     1 2012-03-20 2012-04-10
   mean.data
1 2012-03-08
2 2012-03-15
3 2012-03-23
4 2012-03-29
5 2012-03-30
6 2012-03-30

As an afterthought, if you like pipes, you can put a pipe in your pipe so you can pipe while you pipe - rewriting the first mutate step thus:

my.data %>% mutate(
  MY.DATE1 = paste(MONTH1,DAY1,YEAR1) %>% mdy %>% as.Date,
  MY.DATE2 = paste(MONTH2,DAY2,YEAR2) %>% mdy %>% as.Date)


回答7:

This is a vectorized version of the answer posted by jaysunice3401. It seems fairly straight-forward, except that I had to use trial-and-error to identify the correct origin. I do not know how general origin = "1970-01-01" is or whether a different origin would have to be specified with each data set.

According to this website: http://www.ats.ucla.edu/stat/r/faq/dates.htm

When R looks at dates as integers, its origin is January 1, 1970.

Which seems to suggest that origin = "1970-01-01" is fairly general. Although, if I had dates prior to "1970-01-01" in my data set I would definitely test the code before using it.

my.data = read.table(text = "
     OBS  MONTH1  DAY1  YEAR1  MONTH2  DAY2  YEAR2   STATE
       1       3     6   2012       3    10   2012       1
       2       3    10   2012       3    20   2012       1
       3       3    16   2012       3    30   2012       1
       4       3    20   2012       4     8   2012       1
       5       3    20   2012       4     9   2012       1
       6       3    20   2012       4    10   2012       1
       7       3    20   2012       4    11   2012       1
       8       4     4   2012       4     5   2012       1
       9       4     6   2012       4     6   2012       1
      10       4     6   2012       4     7   2012       1
", header = TRUE, stringsAsFactors = FALSE)

desired.result = read.table(text = "
   OBS MONTH1 DAY1 YEAR1 MONTH2 DAY2 YEAR2 STATE   MY.DATE1   MY.DATE2    mean.date
    1      3     6  2012      3   10  2012     1 2012-03-06 2012-03-10   2012-03-08
    2      3    10  2012      3   20  2012     1 2012-03-10 2012-03-20   2012-03-15
    3      3    16  2012      3   30  2012     1 2012-03-16 2012-03-30   2012-03-23
    4      3    20  2012      4    8  2012     1 2012-03-20 2012-04-08   2012-03-29
    5      3    20  2012      4    9  2012     1 2012-03-20 2012-04-09   2012-03-30
    6      3    20  2012      4   10  2012     1 2012-03-20 2012-04-10   2012-03-30
    7      3    20  2012      4   11  2012     1 2012-03-20 2012-04-11   2012-03-31
    8      4     4  2012      4    5  2012     1 2012-04-04 2012-04-05   2012-04-04
    9      4     6  2012      4    6  2012     1 2012-04-06 2012-04-06   2012-04-06
   10      4     6  2012      4    7  2012     1 2012-04-06 2012-04-07   2012-04-06
", header = TRUE, stringsAsFactors = FALSE)

my.data$MY.DATE1 <- do.call(paste, list(my.data$MONTH1,my.data$DAY1,my.data$YEAR1))
my.data$MY.DATE2 <- do.call(paste, list(my.data$MONTH2,my.data$DAY2,my.data$YEAR2))

my.data$MY.DATE1 <- as.Date(my.data$MY.DATE1, format=c("%m %d %Y"))
my.data$MY.DATE2 <- as.Date(my.data$MY.DATE2, format=c("%m %d %Y"))

my.data$mean.date2 <- as.Date( apply(my.data, 1, function(x) {

                      mean.Date(c(as.Date(x['MY.DATE1']), as.Date(x['MY.DATE2'])))

                      }) , origin = "1970-01-01")
my.data

desired.result


标签: r date mean