I'm working on a PowerPC machine with in-core crypto. I'm having trouble porting AES key expansion from big endian to little endian using built-ins. Big endian works, but little endian does not.
The algorithm below is the snippet presented in an IBM blog article. I think I have the issue isolated to line 2 below:
typedef __vector unsigned char uint8x16_p8;
uint8x64_p8 r0 = {0};
r3 = vec_perm(r1, r1, r5); /* line 1 */
r6 = vec_sld(r0, r1, 12); /* line 2 */
r3 = vcipherlast(r3, r4); /* line 3 */
r1 = vec_xor(r1, r6); /* line 4 */
r6 = vec_sld(r0, r6, 12); /* line 5 */
r1 = vec_xor(r1, r6); /* line 6 */
r6 = vec_sld(r0, r6, 12); /* line 7 */
r1 = vec_xor(r1, r6); /* line 8 */
r4 = vec_add(r4, r4); /* line 9 */
// r1 is ready for next round
r1 = vec_xor(r1, r3); /* line 10 */
Upon entering the function, both big endian and little endian have the following parameters:
(gdb) p r1
$1 = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88,
0x9, 0xcf, 0x4f, 0x3c}
(gdb) p r5
$2 = {0xd, 0xe, 0xf, 0xc, 0xd, 0xe, 0xf, 0xc, 0xd, 0xe, 0xf, 0xc, 0xd, 0xe,
0xf, 0xc}
However, after executing line 2, r6
has the value:
Little endian machine:
(gdb) p r6
$3 = {0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x9, 0xcf, 0x4f, 0x3c,
0x0, 0x0, 0x0, 0x0}
(gdb) p $vs0
$3 = {uint128 = 0x8815f7aba6d2ae28000000003c4fcf09, v2_double = {
4.9992689728788323e-315, -1.0395462025288474e-269}, v4_float = {
0.0126836384, 0, -1.46188823e-15, -4.51291888e-34}, v4_int32 = {
0x3c4fcf09, 0x0, 0xa6d2ae28, 0x8815f7ab}, v8_int16 = {0xcf09, 0x3c4f, 0x0,
0x0, 0xae28, 0xa6d2, 0xf7ab, 0x8815}, v16_int8 = {0x9, 0xcf, 0x4f, 0x3c,
0x0, 0x0, 0x0, 0x0, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88}}
Big endian machine:
(gdb) p r6
$4 = {0x0, 0x0, 0x0, 0x0, 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88}
Notice the odd rotation on the little endian machine.
When I disassemble on the little endian machine after line 2 executes:
(gdb) disass $pc
<skip multiple pages>
0x0000000010000dc8 <+168>: lxvd2x vs12,r31,r9
0x0000000010000dcc <+172>: xxswapd vs12,vs12
0x0000000010000dd0 <+176>: xxlor vs32,vs0,vs0
0x0000000010000dd4 <+180>: xxlor vs33,vs12,vs12
0x0000000010000dd8 <+184>: vsldoi v0,v0,v1,12
0x0000000010000ddc <+188>: xxlor vs0,vs32,vs32
0x0000000010000de0 <+192>: xxswapd vs0,vs0
0x0000000010000de4 <+196>: li r9,64
0x0000000010000de8 <+200>: stxvd2x vs0,r31,r9
=> 0x0000000010000dec <+204>: li r9,48
0x0000000010000df0 <+208>: lxvd2x vs0,r31,r9
0x0000000010000df4 <+212>: xxswapd vs34,vs0
(gdb) p $v0
$5 = void
(gdb) p $vs0
$4 = {uint128 = 0x8815f7aba6d2ae28000000003c4fcf09, v2_double = {
4.9992689728788323e-315, -1.0395462025288474e-269}, v4_float = {
0.0126836384, 0, -1.46188823e-15, -4.51291888e-34}, v4_int32 = {
0x3c4fcf09, 0x0, 0xa6d2ae28, 0x8815f7ab}, v8_int16 = {0xcf09, 0x3c4f, 0x0,
0x0, 0xae28, 0xa6d2, 0xf7ab, 0x8815}, v16_int8 = {0x9, 0xcf, 0x4f, 0x3c,
0x0, 0x0, 0x0, 0x0, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88}}
I have no idea why r6
is not the expected value. Ideally I would examine the vsx register on both machines. Unfortunately GDB is also problematic on both machines so I can't do things like disassemble and print vector registers.
Is vec_sld
endian sensitive? Or is there something else wrong?