I was trying to measure the performance between python dictionaries, cythonized python dictionaries and cythonized cpp std::unordered_map doing only a init procedure. If the cythonized cpp code is compiled I thought it should be faster than the pure python version. I did a test using 4 different scenario/notation options:
- Cython CPP code using std::unordered_map and Cython book notation (defining a pair and using insert method)
- Cython CPP code using std::unordered_map and python notation (map[key] = value)
- Cython code (typed code) using python dictionaries (map[key] = value)
- Pure python code
I was expecting see how cython code outperforms pure python code, but in this case there is not improvement. Which could be the reason? I'm using Cython-0.22, python-3.4 and g++-4.8.
I got this exec time (seconds) using timeit:
- Cython CPP book notation -> 15.696417249999968
- Cython CPP python notation -> 16.481350984999835
- Cython python notation -> 18.585355018999962
- Pure python -> 18.162724677999904
Code is here and you can use it:
cython -a map_example.pyx
python3 setup_map.py build_ext --inplace
python3 use_map_example.py
map_example.pyx
from libcpp.unordered_map cimport unordered_map
from libcpp.pair cimport pair
cpdef int example_cpp_book_notation(int limit):
cdef unordered_map[int, int] mapa
cdef pair[int, int] entry
cdef int i
for i in range(limit):
entry.first = i
entry.second = i
mapa.insert(entry)
return 0
cpdef int example_cpp_python_notation(int limit):
cdef unordered_map[int, int] mapa
cdef pair[int, int] entry
cdef int i
for i in range(limit):
mapa[i] = i
return 0
cpdef int example_ctyped_notation(int limit):
mapa = {}
cdef int i
for i in range(limit):
mapa[i] = i
return 0
setup_map.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
from Cython.Distutils import build_ext
import os
os.environ["CC"] = "g++"
os.environ["CXX"] = "g++"
modules = [Extension("map_example",
["map_example.pyx"],
language = "c++",
extra_compile_args=["-std=c++11"],
extra_link_args=["-std=c++11"])]
setup(name="map_example",
cmdclass={"build_ext": build_ext},
ext_modules=modules)
use_map_example.py
import map_example
C_MAXV = 100000000
C_NUMBER = 10
def cython_cpp_book_notation():
x = 1
while(x<C_MAXV):
map_example.example_cpp_book_notation(x)
x *= 10
def cython_cpp_python_notation():
x = 1
while(x<C_MAXV):
map_example.example_cpp_python_notation(x)
x *= 10
def cython_ctyped_notation():
x = 1
while(x<C_MAXV):
map_example.example_ctyped_notation(x)
x *= 10
def pure_python():
x = 1
while(x<C_MAXV):
map_a = {}
for i in range(x):
map_a[i] = i
x *= 10
return 0
if __name__ == '__main__':
import timeit
print("Cython CPP book notation")
print(timeit.timeit("cython_cpp_book_notation()", setup="from __main__ import cython_cpp_book_notation", number=C_NUMBER))
print("Cython CPP python notation")
print(timeit.timeit("cython_cpp_python_notation()", setup="from __main__ import cython_cpp_python_notation", number=C_NUMBER))
print("Cython python notation")
print(timeit.timeit("cython_ctyped_notation()", setup="from __main__ import cython_ctyped_notation", number=C_NUMBER))
print("Pure python")
print(timeit.timeit("pure_python()", setup="from __main__ import pure_python", number=C_NUMBER))