Android: best method to calculate distance between

2019-05-01 01:39发布

问题:

i researched a little in this topic, but there are many opinions that don't exactly give a clear image. My problem is this: I'm developing a gps-based app for Android, in wich i want to know distance between my current location specified by Androids LocationManager, and other location in real time. I tried Haversine formula, a Law of Cosines formula, then I discovered, that Android SDK gives me a simple function Location.distanceTo(Location) - i'm not sure what method does this function runs on.
So, the point is, wich one will be good for me to use, in situations when real distance between these locations most of the time won't be larger than aprox. 100-200m? Maybe i should check Vincenty's formula? Is it realy that slow? Can someone please explain me what should I choose?

回答1:

Don't use distanceTo. Use the distanceBetween method as it sounds like you already have the coordinates and that's all you need with this method: Location.distanceBetween() Javadoc



回答2:

Looking into the Android source for distanceTo(Location), you can see that the result is based on the "Inverse Formula" of geodesy:

Which is based on using the "Inverse Formula" (section 4)

Furthermore, the two methods distanceTo and distanceBetween use the same underlying method. They just have alternative forms of input/output.

For completeness, the full source of this computation is included below, but I encourage you to check out the Location class in android.location for yourself. (P.S. I did not check the correctness of the Android computation. This would be a good exercise!)

    private static void computeDistanceAndBearing(double lat1, double lon1,
    double lat2, double lon2, float[] results) {
    // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
    // using the "Inverse Formula" (section 4)

    int MAXITERS = 20;
    // Convert lat/long to radians
    lat1 *= Math.PI / 180.0;
    lat2 *= Math.PI / 180.0;
    lon1 *= Math.PI / 180.0;
    lon2 *= Math.PI / 180.0;

    double a = 6378137.0; // WGS84 major axis
    double b = 6356752.3142; // WGS84 semi-major axis
    double f = (a - b) / a;
    double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);

    double L = lon2 - lon1;
    double A = 0.0;
    double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
    double U2 = Math.atan((1.0 - f) * Math.tan(lat2));

    double cosU1 = Math.cos(U1);
    double cosU2 = Math.cos(U2);
    double sinU1 = Math.sin(U1);
    double sinU2 = Math.sin(U2);
    double cosU1cosU2 = cosU1 * cosU2;
    double sinU1sinU2 = sinU1 * sinU2;

    double sigma = 0.0;
    double deltaSigma = 0.0;
    double cosSqAlpha = 0.0;
    double cos2SM = 0.0;
    double cosSigma = 0.0;
    double sinSigma = 0.0;
    double cosLambda = 0.0;
    double sinLambda = 0.0;

    double lambda = L; // initial guess
    for (int iter = 0; iter < MAXITERS; iter++) {
        double lambdaOrig = lambda;
        cosLambda = Math.cos(lambda);
        sinLambda = Math.sin(lambda);
        double t1 = cosU2 * sinLambda;
        double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
        double sinSqSigma = t1 * t1 + t2 * t2; // (14)
        sinSigma = Math.sqrt(sinSqSigma);
        cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
        sigma = Math.atan2(sinSigma, cosSigma); // (16)
        double sinAlpha = (sinSigma == 0) ? 0.0 :
            cosU1cosU2 * sinLambda / sinSigma; // (17)
        cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
        cos2SM = (cosSqAlpha == 0) ? 0.0 :
            cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)

        double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
        A = 1 + (uSquared / 16384.0) * // (3)
            (4096.0 + uSquared *
             (-768 + uSquared * (320.0 - 175.0 * uSquared)));
        double B = (uSquared / 1024.0) * // (4)
            (256.0 + uSquared *
             (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
        double C = (f / 16.0) *
            cosSqAlpha *
            (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
        double cos2SMSq = cos2SM * cos2SM;
        deltaSigma = B * sinSigma * // (6)
            (cos2SM + (B / 4.0) *
             (cosSigma * (-1.0 + 2.0 * cos2SMSq) -
              (B / 6.0) * cos2SM *
              (-3.0 + 4.0 * sinSigma * sinSigma) *
              (-3.0 + 4.0 * cos2SMSq)));

        lambda = L +
            (1.0 - C) * f * sinAlpha *
            (sigma + C * sinSigma *
             (cos2SM + C * cosSigma *
              (-1.0 + 2.0 * cos2SM * cos2SM))); // (11)

        double delta = (lambda - lambdaOrig) / lambda;
        if (Math.abs(delta) < 1.0e-12) {
            break;
        }
    }

    float distance = (float) (b * A * (sigma - deltaSigma));
    results[0] = distance;
    if (results.length > 1) {
        float initialBearing = (float) Math.atan2(cosU2 * sinLambda,
            cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
        initialBearing *= 180.0 / Math.PI;
        results[1] = initialBearing;
        if (results.length > 2) {
            float finalBearing = (float) Math.atan2(cosU1 * sinLambda,
                -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
            finalBearing *= 180.0 / Math.PI;
            results[2] = finalBearing;
        }
    }
}