I have the map function below (runnable example), which inputs a string
and outputs a string
and an integer
.
in tf.data.Dataset.from_tensor_slices
I named the original input 'filenames'
. But when I return the values from the map function map_element_counts
I can only return a tuple (returning a dictionary generates an exception).
Is there a way to name the 2 elements returned from my map_element_counts
function?
import tensorflow as tf
filelist = ['fileA_6', 'fileB_10', 'fileC_7']
def map_element_counts(fname):
# perform operations outside of tensorflow
return 'test', 10
ds = tf.data.Dataset.from_tensor_slices({'filenames': filelist})
ds = ds.map(map_func=lambda x: tf.py_func(
func=map_element_counts, inp=[x['filenames']], Tout=[tf.string, tf.int64]
))
element = ds.make_one_shot_iterator().get_next()
with tf.Session() as sess:
print(sess.run(element))
Result:
(b'test', 10)
Desired Result:
{'elementA': b'test', 'elementB': 10)
Added detail:
When I do return {'elementA': 'test', 'elementB': 10}
I get this exception:
tensorflow.python.framework.errors_impl.UnimplementedError: Unsupported object type dict
Applying tf.py_func
inside ds.map
works.
I created a very simple file as example. Where I just write 10 inside.
dummy_file.txt:
10
Here for the script:
import tensorflow as tf
filelist = ['dummy_file.txt', 'dummy_file.txt', 'dummy_file.txt']
def py_func(input):
# perform operations outside of tensorflow
parsed_txt_file = int(input)
return 'test', parsed_txt_file
def map_element_counts(fname):
# let tensorflow read the text file
file_string = tf.read_file(fname['filenames'])
# then use python function on the extracted string
a, b = tf.py_func(
func=py_func, inp=[file_string], Tout=[tf.string, tf.int64]
)
return {'elementA': a, 'elementB': b, 'file': fname['filenames']}
ds = tf.data.Dataset.from_tensor_slices({'filenames': filelist})
ds = ds.map(map_element_counts)
element = ds.make_one_shot_iterator().get_next()
with tf.Session() as sess:
print(sess.run(element))
print(sess.run(element))
print(sess.run(element))
Output:
{'file': b'dummy_file.txt', 'elementA': b'test', 'elementB': 10}
{'file': b'dummy_file.txt', 'elementA': b'test', 'elementB': 10}
{'file': b'dummy_file.txt', 'elementA': b'test', 'elementB': 10}
I'm posing a final solution to this question for posterity sake. The code below is a copy/paste example that works under the most complex conditions this question addresses (note that the other two answers aren't copy/pastable code samples):
The goal of the code is:
- Take a list of (big) files and split it into chunks (filename/index pairs)
- Process each chunk using a map operation (generators aren't a workable solution here, see: https://github.com/tensorflow/tensorflow/issues/16343)
- Output multiple samples from a map operation that takes only 1 file/chunk as input.
- Maintain element naming throughout the process
Copy/pastable working sample for Tensorflow 1.5 / Python 3.x
import tensorflow as tf
import numpy as np
files = [b'testA', b'testB', b'testC']
def mymap1(x):
result_tensors = tf.py_func(func=mymap2, inp=[x], Tout=[tf.string, tf.int64])
return {'filename': result_tensors[0], 'value': result_tensors[1]}
def mymap2(x):
return np.array([x, x, x]), np.array([10, 20, 30])
def myflatmap(named_elements):
return tf.data.Dataset.zip({
'filename': tf.data.Dataset.from_tensor_slices(named_elements['filename']),
'value': tf.data.Dataset.from_tensor_slices(named_elements['value'])
})
ds = tf.data.Dataset.from_tensor_slices(files)
ds = ds.map(map_func=mymap1)
ds = ds.flat_map(map_func=myflatmap)
element = ds.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(9):
print(sess.run(element))
Output:
{'filename': b'testA', 'value': 10}
{'filename': b'testA', 'value': 20}
{'filename': b'testA', 'value': 30}
{'filename': b'testB', 'value': 10}
{'filename': b'testB', 'value': 20}
{'filename': b'testB', 'value': 30}
{'filename': b'testC', 'value': 10}
{'filename': b'testC', 'value': 20}
{'filename': b'testC', 'value': 30}
There's no need for tf.py_func
in this case, because map_func
of Dataset#map
works with dictionaries and other structures:
map_func
: A function mapping a nested structure of tensors (having shapes and types defined by self.output_shapes
and self.output_types
) to another nested structure of tensors.
Here's an example:
import tensorflow as tf
filelist = ['fileA_6', 'fileB_10', 'fileC_7']
def map_element_counts(fnames):
return {'elementA': b'test', 'elementB': 10, 'file': fnames['filenames']}
ds = tf.data.Dataset.from_tensor_slices({'filenames': filelist})
ds = ds.map(map_func=map_element_counts)
element = ds.make_one_shot_iterator().get_next()
with tf.Session() as sess:
print(sess.run(element))
print(sess.run(element))
print(sess.run(element))
Output:
{'elementA': 'test', 'elementB': 10, 'file': 'fileA_6'}
{'elementA': 'test', 'elementB': 10, 'file': 'fileB_10'}
{'elementA': 'test', 'elementB': 10, 'file': 'fileC_7'}