Advantages of a Binary Heap for a Priority Queue?

2019-04-29 16:42发布

问题:

It seems I'm missing something very simple: what are advantages of a Binary Heap for a Priority Queue comparing, say, with quick-sorted array of values? In both cases we keep values in an array, insert is O(logN), delete-max is O(1) in both cases. Initial construction out of a given array of elements is O(NlogN) in both cases, though the link http://en.wikipedia.org/wiki/Heap_%28data_structure%29 suggests faster Floyd's algorithm for the Binary Heap construction. But in case of a queue the elements are probably received one by one, so this advantage disappears. Also, merge seems to perform better for a Binary Heap.
So what are the reasons to prefer BH besides merge? Maybe my assumption is wrong, and BP is used only for studying purpose. I checked C++ docs, they mention "a heap" but of course it does not necessary means Binary heap.
Somewhat similar question: When is it a bad idea to use a heap for a Priority Queue?
Please explain downvotes if any - I really want to understand this.

回答1:

The major advantage of the binary heap is that you can add new values to it efficiently after initially constructing it. Suppose you want to back a priority queue with a sorted array. If all the values in the queue are known in advance, you can just sort the values, as you've mentioned. But what happens when you the want to add a new value to the priority queue? This might take time Θ(n) in the worst case because you'd have to shift down all the array elements to make space for the new element that you just added. On the other hand, insertion into a binary heap takes time O(log n), which is exponentially faster.

Another reason you'd use a heap over a sorted array is if you only need to dequeue a few elements. As you mentioned, sorting an array takes time O(n log n), but using clever algorithms you can build a heap in time O(n). If you need to build a priority queue and residue k elements from it, where k is unknown in advance, the runtime with a sorted array is O(n log n + k) and with a binary heap is O(n + k log n). For small k, the second algorithm is much faster.

Hope this helps!