Update
I posted a working rough draft of rebind
as an answer to the question. Though I didn't have much luck finding a generic way to keep static_assert
s from breaking metafunctions.
Basically I want to check if a templated type T<U, Args...>
can be constructed from some other type T<V, Args...>
. Where T
and Args...
is the same in both types. The problem is, T<>
might have a static_assert
in it that totally breaks my metafunction.
Below is a rough summary of what I'm trying to do.
template<typename T>
struct fake_alloc {
using value_type = T;
};
template<typename T, typename Alloc = fake_alloc<T>>
struct fake_cont {
using value_type = T;
// comment the line below out, and it compiles, how can I get it to compile without commenting this out???
static_assert(std::is_same<value_type, typename Alloc::value_type>::value, "must be the same type");
};
template<typename T, typename U, typename = void>
struct sample_rebind {
using type = T;
};
template<template<typename...> class Container, typename T, typename U, typename... OtherArgs>
struct sample_rebind<
Container<T, OtherArgs...>,
U,
std::enable_if_t<
std::is_constructible<
Container<T, OtherArgs...>,
Container<U, OtherArgs...>
>::value
>
>
{
using type = Container<U, OtherArgs...>;
};
static_assert(
std::is_same<
fake_cont<int, fake_alloc<int>>,
typename sample_rebind<fake_cont<int>, double>::type
>::value,
"This should pass!"
);
As you can see the desired behavior is that the final static_assert
should pass, but unfortunately, it doesn't even get to that point as the static_assert
in fake_cont
is triggered when std::is_constructible<>
attempts to call fake_cont
's constructor.
In the real code fake_cont
is libc++'s std::vector
, so I can't modify it's guts, or std::is_constructible
's guts.
Any advice for working around this specific issue is appreciated, and any advice in general for SFINAE'ing around static_assert
's is especially appreciated.
Edit: the first part of the is_same should have been fake_cont<int, fake_alloc<int>>
Edit 2: If you comment out the static_assert
in fake_cont
, it compiles (clang 3.5). And that's what I want. So I just need some way to avoid the static_assert
in fake_cont
.
namespace details {
template<class T,class=void>
struct extra_test_t: std::true_type {};
}
We then fold an extra test in:
template<class...>struct types{using type=types;};
template<template<typename...> class Container, typename T, typename U, typename... OtherArgs>
struct sample_rebind<
Container<T, OtherArgs...>,
U,
std::enable_if_t<
details::extra_test_t< types< Container<T, OtherArgs...>, U > >::value
&& std::is_constructible<
Container<T, OtherArgs...>,
Container<U, OtherArgs...>
>::value
>
> {
using type = Container<U, OtherArgs...>;
};
and we write the extra test:
namespace details {
template<class T, class Alloc, class U>
struct extra_test_t<
types<std::vector<T,Alloc>, U>,
typename std::enable_if<
std::is_same<value_type, typename Alloc::value_type>::value
>::type
> : std::true_type {};
template<class T, class Alloc, class U>
struct extra_test_t<
types<std::vector<T,Alloc>, U>,
typename std::enable_if<
!std::is_same<value_type, typename Alloc::value_type>::value
>::type
> : std::false_type {};
}
basically, this lets us inject "patches" on our test to match the static_assert
.
If we had is_std_container<T>
and get_allocator<T>
, we could write:
namespace details {
template<template<class...>class Z,class T, class...Other, class U>
struct extra_test_t<
types<Z<T,Other...>>, U>,
typename std::enable_if<
is_std_container<Z<T,Other...>>>::value
&& std::is_same<
value_type,
typename get_allocator<Z<T,Other...>>::value_type
>::value
>::type
> : std::true_type {};
template<class T, class Alloc, class U>
struct extra_test_t<
types<std::vector<T,Alloc>, U>,
typename std::enable_if<
is_std_container<Z<T,Other...>>>::value
&& !std::is_same<
value_type,
typename get_allocator<Z<T,Other...>>::value_type
>::value
>::type
> : std::false_type {};
}
or we could just state that anything with an allocator_type
probably cannot be rebound.
A more container-aware approach to this problem would be to extract the allocator type (::allocator_type
), and replace all instances of the allocator type in the container argument list with a rebind of T
to U
somehow. This is still tricky, as std::map<int, int>
has an allocator of type std::allocator< std::pair<const int, int> >
, and distinguishing between the key int
and the value int
isn't possible in a generic way.
I've managed to get a pretty solid first draft of rebind going. It works for all the STL containers (barring less common combinations of template parameters), the container adapters, and std::integer_sequence
. And it probably works for a lot more things as well. But it certainly won't work for everything.
The main trouble was getting the map-like types to work as Yakk predicted, but a little type trait helped out with that.
So on to the code...
void_t
template<class...>
using void_t = void;
This little trick by Walter E. Brown makes implementing type traits a lot easier.
Type Traits
template<class T, class = void>
struct is_map_like : std::false_type {};
template<template<class...> class C, class First, class Second, class... Others>
struct is_map_like<C<First, Second, Others...>,
std::enable_if_t<std::is_same<typename C<First, Second, Others...>::value_type::first_type,
std::add_const_t<First>>{} &&
std::is_same<typename C<First, Second, Others...>::value_type::second_type,
Second>{}>>
: std::true_type {};
template<class T, class U, class = void>
struct has_mem_rebind : std::false_type {};
template<class T, class U>
struct has_mem_rebind<T, U, void_t<typename T::template rebind<U>>> : std::true_type {};
template<class T>
struct is_template_instantiation : std::false_type {};
template<template<class...> class C, class... Others>
struct is_template_instantiation<C<Others...>> : std::true_type {};
is_map_like
uses the fact that the map-like types in the STL all have value_type
defined to be a(n) std::pair
with the const
ed first template parameter of the map-like type, being the first_type
in the pair
. The second template parameter of the map-like type matches exactly the pair
's second_type
. rebind
has to handle map-like types more carefully.
has_mem_rebind
is detects the presence of a member rebind
meta-function on T
using the void_t
trick. If a class has rebind
then we'll defer to the classes implementation first.
is_template_instantiation
detects if the type T
is a template instantiation. This is more for debugging.
Helper Type List
template<class... Types>
struct pack
{
template<class T, class U>
using replace = pack<
std::conditional_t<
std::is_same<Types, T>{},
U,
Types
>...
>;
template<class T, class U>
using replace_or_rebind = pack<
std::conditional_t<
std::is_same<Types, T>{},
U,
typename rebind<Types, U>::type
>...
>;
template<class Not, class T, class U>
using replace_or_rebind_if_not = pack<
std::conditional_t<
std::is_same<Types, Not>{},
Types,
std::conditional_t<
std::is_same<Types, T>{},
U,
typename rebind<Types, U>::type
>
>...
>;
template<class T>
using push_front = pack<T, Types...>;
};
This handles some simple list like manipulations of types
replace
replaces all occurrences of T
with U
in a non-recursive fashion.
replace_or_rebind
replaces all occurrences of T
with U
, and for all non-matching occurrences, calls rebind
replace_or_rebind_if_not
is the same as replace_or_rebind
but skips over any element matching Not
push_front
simply pushes an element on to the front of the type-list
Calling Member Rebind
// has member rebind implemented as alias
template<class T, class U, class = void>
struct do_mem_rebind
{
using type = typename T::template rebind<U>;
};
// has member rebind implemented as rebind::other
template<class T, class U>
struct do_mem_rebind<T, U, void_t<typename T::template rebind<U>::other>>
{
using type = typename T::template rebind<U>::other;
};
It turns out there's two different valid ways to implement a member rebind
according to the standard. For allocators it's rebind<T>::other
. For pointers it's just rebind<T>
. This implementation of do_mem_rebind
goes with rebind<T>::other
if it exists, otherwise it falls back to the simpler rebind<T>
.
Unpacking
template<template<class...> class C, class Pack>
struct unpack;
template<template<class...> class C, class... Args>
struct unpack<C, pack<Args...>> { using type = C<Args...>; };
template<template<class...> class C, class Pack>
using unpack_t = typename unpack<C, Pack>::type;
This takes a pack
, extracts the types it contains, and puts them into some other template C
.
Rebind Implementation
The good stuff.
template<class T, class U, bool = is_map_like<T>{}, bool = std::is_lvalue_reference<T>{}, bool = std::is_rvalue_reference<T>{}, bool = has_mem_rebind<T, U>{}>
struct rebind_impl
{
static_assert(!is_template_instantiation<T>{}, "Sorry. Rebind is not completely implemented.");
using type = T;
};
// map-like container
template<class U, template<class...> class C, class First, class Second, class... Others>
class rebind_impl<C<First, Second, Others...>, U, true, false, false, false>
{
using container_type = C<First, Second, Others...>;
using value_type = typename container_type::value_type;
using old_alloc_type = typename container_type::allocator_type;
using other_replaced = typename pack<Others...>::template replace_or_rebind_if_not<old_alloc_type, First, typename U::first_type>;
using new_alloc_type = typename std::allocator_traits<old_alloc_type>::template rebind_alloc<std::pair<std::add_const_t<typename U::first_type>, typename U::second_type>>;
using replaced = typename other_replaced::template replace<old_alloc_type, new_alloc_type>;
using tail = typename replaced::template push_front<typename U::second_type>;
public:
using type = unpack_t<C, typename tail::template push_front<typename U::first_type>>;
};
// has member rebind
template<class T, class U>
struct rebind_impl<T, U, false, false, false, true>
{
using type = typename do_mem_rebind<T, U>::type;
};
// has nothing, try rebind anyway
template<template<class...> class C, class T, class U, class... Others>
class rebind_impl<C<T, Others...>, U, false, false, false, false>
{
using tail = typename pack<Others...>::template replace_or_rebind<T, U>;
public:
using type = unpack_t<C, typename tail::template push_front<U>>;
};
// has nothing, try rebind anyway, including casting NonType template parameters
template<class T, template<class, T...> class C, class U, T FirstNonType, T... Others>
struct rebind_impl<C<T, FirstNonType, Others...>, U, false, false, false, false>
{
using type = C<U, U(FirstNonType), U(Others)...>;
};
// array takes a non-type parameter parameters
template<class T, class U, std::size_t Size>
struct rebind_impl<std::array<T, Size>, U, false, false, false, false>
{
using type = std::array<U, Size>;
};
// pointer
template<class T, class U>
struct rebind_impl<T*, U, false, false, false, false>
{
using type = typename std::pointer_traits<T*>::template rebind<U>;
};
// c-array
template<class T, std::size_t Size, class U>
struct rebind_impl<T[Size], U, false, false, false, false>
{
using type = U[Size];
};
// c-array2
template<class T, class U>
struct rebind_impl<T[], U, false, false, false, false>
{
using type = U[];
};
// lvalue ref
template<class T, class U>
struct rebind_impl<T, U, false, true, false, false>
{
using type = std::add_lvalue_reference_t<std::remove_reference_t<U>>;
};
// rvalue ref
template<class T, class U>
struct rebind_impl<T, U, false, false, true, false>
{
using type = std::add_rvalue_reference_t<std::remove_reference_t<U>>;
};
- The fail case for
rebind
is to simply leave the type unchanged. This allows calling rebind<Types, double>...
without having to worry about whether every Type
in Types
is rebind
able. There's a static_assert
in there in case it receives a template instantiation. If that's hit, you probably need another specialization of rebind
- The map-like
rebind
expects to be invoked like rebind<std::map<int, int>, std::pair<double, std::string>>
. So the type the allocator is being rebound to, doesn't exactly match the type the container is being rebound to. It does a replace_or_rebind_if_not
on all the types except the Key and Value types, with the if_not
being the allocator_type
. Since the allocator type differs from the key/value pair rebind
needs to modify the const
ness of the first element of the pair. It uses std::allocator_traits
to rebind the allocator, as all allocators must be rebindable via std::allocator_traits
.
- If
T
has a member rebind
, use that.
- If
T
has no member rebind
, replace_or_rebind
all parameters to the template C
that match C
's first template parameter.
- If
T
has one type parameter, and a bunch of non-type template parameters whose type matches that parameter. Attempt to recast all of those non-type parameters to U
. This is the case that makes std::integer_sequence
work.
- A special case was required for
std::array
as it takes a non-type template parameter giving it's size, and that template parameter should be left alone.
- This case allows for rebinding of pointers to other pointer types. It uses
std::pointer_traits
's rebind
to accomplish this.
- Lets
rebind
work on sized c-arrays ex: T[5]
- Lets
rebind
work on c-arrays without a size ex: T[]
rebind
s lvalue-ref T
types to a guaranteed lvalue-ref to std::remove_reference_t<U>
.
rebind
s rvalue-ref T
types to a guaranteed rvalue-ref to std::remove_reference_t<U>
.
Derived (Exposed) Class
template<class T, class U>
struct rebind : details::rebind_impl<T, U> {};
template<class T, class U>
using rebind_t = typename rebind<T, U>::type;
Back To SFINAE and static_assert
After much googling there doesn't seem to be a generic way to SFINAE around static_assert
s like the ones in libc++'s STL containers. It really makes me wish the language had something more SFINAE friendly, but a little more ad-hoc than concepts.
Like:
template<class T>
static_assert(CACHE_LINE_SIZE == 64, "")
struct my_struct { ... };