I'm trying to run a Spark-based application on an Azure HDInsight on-demand cluster, and am seeing lots of SparkExceptions (caused by ConcurrentModificationExceptions) being logged. The application runs without these errors when I start a local Spark instance.
I've seen reports of similar errors when using accumulators and my code is indeed using a CollectionAccumulator, however I have placed synchronized blocks everywhere I use it, and it makes no difference. The accumulator-related code looks like this:
class MySparkClass(sc : SparkContext) {
val myAccumulator = sc.collectionAccumulator[MyRecord]
override def add(record: MyRecord) = {
synchronized {
myAccumulator.add(record)
}
}
override def endOfBatch() = {
synchronized {
myAccumulator.value.asScala.foreach((record: MyRecord) => {
processIt(record)
})
}
}
}
The exceptions don't cause the application to fail, however when endOfBatch
is called and the code tries to read values out of the accumulator it is empty and processIt
is never called.
We are using HDInsight version 3.6 with Spark version 2.3.0
18/11/26 11:04:37 WARN Executor: Issue communicating with driver in heartbeater
org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205)
at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:92)
at org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$reportHeartBeat(Executor.scala:785)
at org.apache.spark.executor.Executor$$anon$2$$anonfun$run$1.apply$mcV$sp(Executor.scala:814)
at org.apache.spark.executor.Executor$$anon$2$$anonfun$run$1.apply(Executor.scala:814)
at org.apache.spark.executor.Executor$$anon$2$$anonfun$run$1.apply(Executor.scala:814)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1988)
at org.apache.spark.executor.Executor$$anon$2.run(Executor.scala:814)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.util.ConcurrentModificationException
at java.util.ArrayList.writeObject(ArrayList.java:770)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:1140)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.defaultWriteObject(ObjectOutputStream.java:441)
at java.util.Collections$SynchronizedCollection.writeObject(Collections.java:2081)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:1140)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.writeArray(ObjectOutputStream.java:1378)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1174)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.writeArray(ObjectOutputStream.java:1378)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1174)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:43)
at org.apache.spark.rpc.netty.RequestMessage.serialize(NettyRpcEnv.scala:565)
at org.apache.spark.rpc.netty.NettyRpcEnv.ask(NettyRpcEnv.scala:231)
at org.apache.spark.rpc.netty.NettyRpcEndpointRef.ask(NettyRpcEnv.scala:523)
at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:91)
... 13 more
The following code is a more self-contained example that reproduces the problem. MyRecord
is a simple case class containing only numeric values. The code runs without error locally, but on an HDInsight cluster it produces the error above.
object MainDemo {
def main(args: Array[String]) {
val sparkContext = SparkSession.builder.master("local[4]").getOrCreate().sparkContext
val myAccumulator = sparkContext.collectionAccumulator[MyRecord]
sparkContext.binaryFiles("/my/files/here").foreach(_ => {
for(i <- 1 to 100000) {
val record = MyRecord(i, 0, 0)
myAccumulator.add(record)
}
})
myAccumulator.value.asScala.foreach((record: MyRecord) => {
// we expect this to be called once for each record that we 'add' above,
// but it is never called
println(record)
})
}
}