I am trying to optimize my code with Cython. It is doing a a power spectrum, not using FFT, because this is what we were told to do in class. I've tried to write to code in Cython, but do not see any difference. Here is my code
#! /usr/bin/env python
# -*- coding: utf8 -*-
from __future__ import division
cimport numpy as np
import numpy as np
cimport cython
@cython.boundscheck(False)
def power_spectrum(time, data, double f_min, double f_max, double df,w=1 ):
cdef double com,f
cdef double s,c,sc,cc,ss
cdef np.ndarray[double, ndim=1] power
cdef np.ndarray[double, ndim=1] freq
alfa, beta = [],[]
m = np.mean(data)
data -= m
freq = np.arange( f_min,f_max,df )
for f in freq:
sft = np.sin(2*np.pi*f*time)
cft = np.cos(2*np.pi*f*time)
s = np.sum( w*data*sft )
c = np.sum( w*data*cft )
ss = np.sum( w*sft**2 )
cc = np.sum( w*cft**2 )
sc = np.sum( w*sft*cft )
alfa.append( ( s*cc-c*sc )/( ss*cc-sc**2 ))
beta.append( ( c*ss-s*sc )/( ss*cc-sc**2 ))
com = -(f-f_min)/(f_min-f_max)*100
print "%0.3f%% complete" %com
power = np.array(alfa)**2 + np.array(beta)**2
return freq,power,alfa,beta
The time and data is loaded via numpy.loadtxt and sent to this function. When I do
cython -a power_spectrum.pyx
the .html file is very yellow, so not very efficient. Especially the entire for-loop and the calulation of power and returning everything.
I have tried to read the official guide to Cython, but as I have never coded in C it is somewhat hard to understand.
All help is very preciated :)