Calculating Probability of a Random Variable in a

2019-04-25 22:53发布

问题:

Given a mean and standard-deviation defining a normal distribution, how would you calculate the following probabilities in pure-Python (i.e. no Numpy/Scipy or other packages not in the standard library)?

  1. The probability of a random variable r where r < x or r <= x.
  2. The probability of a random variable r where r > x or r >= x.
  3. The probability of a random variable r where x > r > y.

I've found some libraries, like Pgnumerics, that provide functions for calculating these, but the underlying math is unclear to me.

Edit: To show this isn't homework, posted below is my working code for Python<=2.6, albeit I'm not sure if it handles the boundary conditions correctly.

from math import *
import unittest

def erfcc(x):
    """
    Complementary error function.
    """
    z = abs(x)
    t = 1. / (1. + 0.5*z)
    r = t * exp(-z*z-1.26551223+t*(1.00002368+t*(.37409196+
        t*(.09678418+t*(-.18628806+t*(.27886807+
        t*(-1.13520398+t*(1.48851587+t*(-.82215223+
        t*.17087277)))))))))
    if (x >= 0.):
        return r
    else:
        return 2. - r

def normcdf(x, mu, sigma):
    t = x-mu;
    y = 0.5*erfcc(-t/(sigma*sqrt(2.0)));
    if y>1.0:
        y = 1.0;
    return y

def normpdf(x, mu, sigma):
    u = (x-mu)/abs(sigma)
    y = (1/(sqrt(2*pi)*abs(sigma)))*exp(-u*u/2)
    return y

def normdist(x, mu, sigma, f):
    if f:
        y = normcdf(x,mu,sigma)
    else:
        y = normpdf(x,mu,sigma)
    return y

def normrange(x1, x2, mu, sigma, f=True):
    """
    Calculates probability of random variable falling between two points.
    """
    p1 = normdist(x1, mu, sigma, f)
    p2 = normdist(x2, mu, sigma, f)
    return abs(p1-p2)

回答1:

All these are very similar: If you can compute #1 using a function cdf(x), then the solution to #2 is simply 1 - cdf(x), and for #3 it's cdf(x) - cdf(y).

Since Python includes the (gauss) error function built in since version 2.7 you can do this by calculating the cdf of the normal distribution using the equation from the article you linked to:

import math
print 0.5 * (1 + math.erf((x - mean)/math.sqrt(2 * standard_dev**2)))

where mean is the mean and standard_dev is the standard deviation.

Some notes since what you asked seemed relatively straightforward given the information in the article:

  • CDF of a random variable (say X) is the probability that X lies between -infinity and some limit, say x (lower case). CDF is the integral of the pdf for continuous distributions. The cdf is exactly what you described for #1, you want some normally distributed RV to be between -infinity and x (<= x).
  • < and <= as well as > and >= are same for continuous random variables as the probability that the rv is any single point is 0. So whether or not x itself is included doesn't actually matter when calculating the probabilities for continuous distributions.
  • Sum of probabilities is 1, if its not < x then it's >= x so if you have the cdf(x). then 1 - cdf(x) is the probability that the random variable X >= x. Since >= is equivalent for continuous random variables to >, this is also the probability X > x.