I am working on an application where I have the center of a circle and the radius and I am plotting the circle with the help of Leaflet.
I placed a marker on the north most end of the circumference and made it draggable.
var circle = L.circle(coords, radius).addTo(map);
convertRadiusToLatitude = parseInt(response.radius)/111111;
var coordsOnRadius = [parseFloat(response.lat) + convertRadiusToLatitude, parseFloat(response.long)];
var markerOnRadius = L.marker(coordsOnRadius, {draggable: true}).addTo(map);
Now, this adds the marker to the circumference and now I wanted it to be draggable only on the circumference itself for which I used the parametric equation.
Parametric equation
x = Xc + R * cos(theta)
y = Yc + R * sin(theta)
Code for dragging
markerOnRadius.on('drag', function(e){
bearing = marker.getLatLng().bearingTo(markerOnRadius.getLatLng());
var markerOnRadiusX = parseFloat(response.lat) + ((0.000009 * parseFloat(response.radius)) * Math.cos( toRad(bearing) ));
var markerOnRadiusY = parseFloat(response.long) + ((0.000009 * parseFloat(response.radius)) * Math.sin( toRad(bearing) ));
markerOnRadius.setLatLng([markerOnRadiusX, markerOnRadiusY]);
});
The bearingTo
method:
L.LatLng.prototype.bearingTo = function(other) {
var d2r = L.LatLng.DEG_TO_RAD;
var r2d = L.LatLng.RAD_TO_DEG;
var lat1 = this.lat * d2r;
var lat2 = other.lat * d2r;
var dLon = (other.lng-this.lng) * d2r;
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) - Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
brng = parseInt( brng * r2d );
brng = (brng + 360) % 360;
return brng;
};
Issue
When I start dragging the marker, this code is working fine and brings it back to the circumference at the bearing at which the marker is dragged to. But there is one problem, the coords on the circumference are slightly off and in terms of longitude. When the bearing is 0 (north), the coords are perfect, but when it is 90 (east), the longitude is slightly less that it should for the marker to be at the circumference.
Again at 180 (south), coords are perfect, but at 270 (west), the longitude calculated is slightly less and the marker tends towards the radius again.
So basically if you visualize the marker being dragged, it starts perfectly on the north end and starts coming inside the circle slightly increasing with the bearing till it reacher 90 and then starts going towards the circumference again till 180 when it is perfect again.
It forms more like a ellipse if you get the gist of it.
Could anyone tell me why is longitude coming a little off and why the marker moves in an elliptical path. Has it something to do with the world coordinates and window coordinates. Or are my equations slightly off somewhere?